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Prädiktion des Sprachverstehens mit Hörgerät mittels Random Forest
Regression

Abstract
Hearing aid (HA) users show largely unexplained variability in aided
speech recognition. Until now, there is no clear recommendation for
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recognition with HA. This study aimed to identify the most influential
factors affecting the word recognition score with HA at 65 dB sound
pressure level (SPL), referred to hereinafter asWRS65(HA). Retrospective 1 Department of Audiology,

ENT Clinic, University ofdata from clinical routinemeasurements of 635HA users were analysed,
including 18 demographic, audiological, and HA-related features. Erlangen-Nürnberg, Erlangen,

GermanyA Random Forest Regression (RFR) was applied to predict WRS65(HA);
and an iterative feature-selection process was used to determine the
feature combination with the lowest mean absolute error (MAE). Audi-
ological features such as maximum word recognition score (WRSmax),
pure-tone average (PTA), and unaided word recognition score at 65 dB
SPL (WRS65) showed the highest individual predictive accuracy. Demo-
graphic features such as age and sex performed considerably worse.
The lowest statistically significant MAE (9.8 percentage points, pp) was
achieved with a three-feature combination: WRSmax, WRS65 and the fit-
to-target accuracy in real-ear measurements for medium frequencies
at 65 dB SPL input level. The inclusion of additional features appears
to yield limited benefit and may increase the risk of overfitting. The
simple prediction model by Hoppe et al. (2014) based on the PTA
achieved an MAE of 14.4 pp and was outperformed by 4.6 pp when
using the best three-feature combination. These findings highlight that
PTA alone is insufficient for accurately predictingWRS65(HA). Combining
speech audiometric data in combination with HA-specific parameters
provides substantially better results.
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Zusammenfassung
Menschen mit Hörgeräten (HGs) zeigen eine bislang weitgehend un-
erklärte Variabilität im Sprachverstehen mit HG. Bisher gibt es keine
klare Empfehlung zur Bewertung der HG-Versorgung, insbesondere im
Hinblick auf das erreichbare Sprachverstehenmit HG. Ziel dieser Studie
war es, die einflussreichsten Faktoren auf das Sprachverstehenmit HG
bei einem Schalldruckpegel von 65 dB SPL (Sound Pressure Level) zu
identifizieren; im Folgenden als WRS65(HA) bezeichnet. Retrospektiv
wurden Daten aus klinischen Routinemessungen von 635 Hörgeräte-
trägern analysiert, wobei 18 demografische, audiologische und hörge-
rätespezifische Merkmale berücksichtigt wurden. Zur Vorhersage von
WRS65(HA) wurde ein Random Forest Regressionsmodell (RFR) einge-
setzt. Durch ein iteratives Merkmals-Auswahlverfahren wurde die
Kombination von Merkmalen mit dem geringsten mittleren absoluten
Fehler (MAE) ermittelt. Audiologische Merkmale wie das maximale Ein-
silberverstehen (WRSmax), der mittlere Hörverlust (PTA) und das unver-
sorgte Einsilberverstehen bei 65 dB SPL (WRS65) wiesen die höchste
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individuelle Vorhersagegenauigkeit auf. Demografische Merkmale wie
Alter und Geschlecht schnitten deutlich schlechter ab. Der niedrigste
signifikanteMAE (9,8 Prozentpunkte, pp) wurdemit einer Drei-Merkmals-
Kombination erreicht: WRSmax, WRS65 und die Ziel-Abweichungen bei in-
situ-Messungen im mittleren Frequenzbereich bei 65 dB SPL. Die Ein-
beziehung zusätzlicher Funktionen scheint nur einen begrenzten Nutzen
zu bringen und kann das Risiko einer Überanpassung erhöhen. Das
einfache, PTA-basierte Vorhersagemodell von Hoppe et al. (2014) er-
reichte einen MAE von 14,4 pp und wurde durch die ermittelte Drei-
Merkmals-Kombination um 4,6 pp übertroffen. Die Ergebnisse zeigen,
dass PTA allein nicht ausreicht, um WRS65(HA) zuverlässig vorherzu-
sagen. Eine Kombination aus audiologischen und HG-spezifischen
Parametern lieferte deutlich bessere Ergebnisse.

Schlüsselwörter: Hörgerät, In-situ-Messungen, maschinelles Lernen

Introduction
Speech recognition improvement through hearing aids
(HAs) is a key indicator of successful hearing rehabilitation
and remains a central objective in audiological care. Ef-
fective HA fitting requires a delicate balance between
providing sufficient amplification and maintaining user
comfort and speech clarity. In clinical practice, the word
recognition score at 65 dB sound pressure level (SPL) is
commonly evaluated using standardised speech tests,
such as the Freiburgmonosyllable test [1], and is referred
to hereinafter as WRS65(HA). Despite certain limitations,
it remains the most commonly used tool for evaluating
HA benefit in German-speaking countries and is endorsed
in the German health-care [2].
Nevertheless, considerable individual variability in speech
recognition persists, even among patients with similar
hearing loss [3], [4], [5], [6], [7], [8], [9]. According to
Hoppe et al. (2014), the greatest variability in WRS65(HA),
ranging from 0% to 95%, was observed around a pure-
tone average (PTA) of 60 dB hearing level [3]. Holube and
Kollmeier (1996) demonstrated that speech recognition
in HA users depends not only on audiometric thresholds
but also on auditory processing factors such as temporal
and spectral resolution [10]. These factors are described
as the “distortion” component in Plomp’s model (1986)
[11]. While Holube et al. (1996) and Plomp (1986) em-
phasize speech recognition in noise, where processing
deficits have a greater impact and performance is more
strongly influenced by auditory processing abilities (‘dis-
tortion’ [11]), the studies by other authors (e.g., [3], [4],
[5], [6], [7], [8], [9]) primarily focus on speech recognition
in quiet, which is largely determined by audibility (‘atten-
uation’ [11]). Although many studies have developed
predictive models for speech recognition in noise, rela-
tively few focus on speech recognition in quiet while
integrating multiple influencing factors. These findings
underscore the need for predictive models that extend
beyond puremeasures of hearing loss. Suchmodels could
also support clinical practice by enabling faster detection
and interpretation of individual results in speech recogni-
tion.

Machine learningmethods like RandomForest Regression
(RFR [12]) are well-suited for modelling complex and
nonlinear relationships between input features. RFR is
an ensemble-based algorithm that combines multiple
decision tree regressors to predict continuous outcomes.
In contrast to so-called “black box”models, such as deep
neural networks, which offer limited insight into the un-
derlying decision process, RFR provides access to feature
importancemetrics and decision pathways. These aspects
are crucial for fostering trust, transparency, and practical
applicability in healthcare settings.
In this retrospective study, data from routine clinical as-
sessments, including audiometric, demographic, and HA-
related parameters, were utilised to develop a predictive
model of WRS65(HA) based on RFR. The primary objective
was to identify the most influential predictors of
WRS65(HA) using a forward feature selection process [13],
and to investigate the added value of combining features
across different domains. This data-driven approach en-
hances understanding of the factors affecting HA perfor-
mance, supporting more individualised and evidence-
based HA fitting in clinical practice.

Methods
Clinical routine data were collected retrospectively, en-
compassing a broad range of variables such as demo-
graphic information, audiological measures, and HA-
related parameters. These variables underwent a feature
selection process to identify those with the greatest im-
pact on WRS65(HA).

Data preparation

In this study, 635 HA evaluations of 374 patients (166 f,
208 m), comprising 303 bilateral and 71 unilateral HA
users, aged 20–96 years (mean and standard deviation:
66.6±15.0 years) were analysed. Demographic details
are given in [9]. For pure-tone and speech audiometry, a
standard clinical audiometer (AT900/AT1000 Auritec,
Hamburg, Germany) was used. The four-frequency PTA,
hereinafter referred to as PTA, was measured separately
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for both ears. For each speech recognitionmeasurement,
one list of 20 words of the Freiburg monosyllable test [1]
was presented. The maximum word recognition score
(WRSmax) was measured via headphones by stepwise in-
creasing the presentation level, starting at 65 dB SPL.
The level at which WRSmax was reached is referred to as
L(WRSmax). Aided (WRS65(HA)) and unaided (WRS65) speech
recognition were determined in quiet at 65 dB SPL in
sound field, using a loudspeaker placed in front (0°, 1m).
Additionally, the HAmanufacturer and the HA experience
in years were documented.
In order to evaluate the fitting quality of the HA, the sound-
pressure level in the aided ear was measured by real-ear
measurements with the Aurical II (Aurical, Natus, Münster,
Germany). The international speech test signal (ISTS [14])
was presented at 50, 65 and 80 dB SPL to determine
the long-term average speech spectrum (LTASS [15]) for
20 third-octave frequency bands fn (fn=0.125*2

((n–1)/3) kHz,
n=1, 2, …, 20), based on established LTASS characteris-
tics. The corresponding target levels were derived accord-
ing to the DSL v5.0 (Desired Sensation Level version 5.0)
prescription rule [16], [17]. To quantify the match
between prescribed and measured output, the mean
difference between LTASS and targets was calculated
and referred to as the fit-to-target value (FtT). These FtT
values were analysed across three frequency ranges —
Low (0.25–0.63 kHz), Mid (0.8–2.5 kHz), and High
(3.15–6 kHz) — and for each of the three input levels (50,
65, and 80 dB SPL). This resulted in nine distinct features:
FtT50(Low), FtT50(Mid), FtT50(High), FtT65(Low), FtT65(Mid),
FtT65(High), FtT80(Low), FtT80(Mid), and FtT80(High), which
together represent the accuracy of HA fitting across the
speech spectrum and varying input levels.

Model setup

Random forest models are widely used for classification,
regression, and predictive modelling due to their robust-
ness and ability to handle high-dimensional data. In this
study, the predictive performance of an RFR was evalu-
ated using 18 features (see Figure 1), following an itera-
tive forward feature selection process [13] based on
mean absolute error (MAE):

where n is the number of data points, represents the
measured value and denotes the predicted value of
speech recognition using the Freiburg monosyllable test,
and | – | is the absolute error for the i-th data point.
For each iteration of the RFR model, the dataset was
randomly split into 80% training and 20% test data. The
selected features were evaluated over 100 independent
runs to account for variability in random sampling, and
the resulting MAE represents the average across these
runs. Initially, each of the 18 features was tested indi-
vidually and ranked based on their average MAE (see
Figure 1). The best-performing feature (lowest MAE) was
selected for the second iteration. In the next step, this

top-ranked feature was combinedwith each of the remain-
ing 17 features to identify the optimal two-feature com-
bination (see Figure 2), again based on the lowest MAE.
This greedy forward-selection approach was repeated it-
eratively, adding one feature at a time based on perfor-
mance, until all features were ranked. The optimal feature
subset was identified at the iteration step with the mini-
mumMAE. Additionally, statistical significance tests were
used to determine the point up to which the MAE contin-
ued to decrease significantly. This step was considered
the best balance between model complexity and predic-
tive performance. For the entire feature selection process,
we used fixed standard hyperparameters:

• Forest size (number of trees)=100
• Min leaf size (minimumnumber of data points required
in a leaf node)=5

• Max splits (maximum number of splits allowed in any
decision tree)=25

Fixed hyperparameters were chosen to ensure that differ-
ences in model performance could be attributed to fea-
ture selection rather than changes in model complexity.
While hyperparameter optimization is known to potentially
improve model performance, the focus here was on
evaluating feature importance under consistent model
settings. Performing hyperparameter optimization initially
with the full feature set could bias the feature selection
process, as optimal settings for a large feature set may
not generalize well to smaller subsets. Furthermore,
conducting hyperparameter tuning at every iteration of
the feature selection process would drastically increase
the total computational time, with likely only marginal
improvements in performance.

Data analysis

The dataset was complete and contained no missing or
erroneous values, so no data cleaning was required. The
Shapiro–Wilk test was conducted to assess the normality
of the data. Based on the results, either t-tests or rank-
sum tests were applied for pairwise comparisons, using
a significance level of α=0.05. Spearman’s method was
used to calculate correlations. The statistical tests were
carried out with Statistical Package for Social Sciences
(SPSS® V24, IBMCorp., Armonk/NY, USA) and the RFRwas
performedwithMatlab®R2020b (Mathworks, Natick/MA,
USA).

Results
Figure 1 presents theMAE as a result of the RFR for each
feature used individually as an input parameter. The
features are ranked in descending order of MAE, starting
with the highest (worst) and ending with the lowest (best).
Side, sex, HA manufacturer, and age yielded the highest
MAEs (27.7–28 percentage points, pp). Including HA-
experience reduced theMAE to 25 pp, with further reduc-
tions down to 21.1 pp across the FtT-values and L(WRSmax).
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Figure 1: Mean absolute error (MAE) for 18 features, sorted by their MAE (highest to lowest). Each feature was individually fed
into a Random Forest Regression and evaluated 100 times.

Figure 2: Mean absolute error (MAE) across 18 iterations. Each iteration illustrates the lowest MAE by using the selected feature
with the previous ones. The red rectangle highlights the iteration that led to the overall lowest MAE (MAEmin). The blue rectangle
marks the iteration where the reduction in MAE was still statistically significant compared to the previous iteration (MAEsig).

(*** p<0.001, Iteration 1/2; *** p<0.001, Iteration 2/3)
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Figure 3: Scatter plot and correlation analysis betweenmeasured and predicted speech recognition with hearing aid (WRS65(HA))
for a randomly selected subset of test data from the third iteration (n=127, 20% test data)

Among all features, the largest MAE reduction was found
between FtT80(Low) and WRS65, where the MAE dropped
from 21.1 pp to 15.1 pp. Ultimately, PTA emerged as the
second-best feature (14.4 pp), while WRSmax achieved the
lowest MAE (13.7 pp) in the first iteration, making it the
best-performing feature.
In Figure 2, each iteration represents a stepwise feature
selection process, starting with the single best-performing
feature WRSmax with the lowest MAE of 13.7 pp from the
first iteration (see Figure 1). Iteration 2 shows the MAE
of the best combination of two features: the best feature
from Iteration 1 paired with the remaining feature that
resulted in the largest additional performance gain
(WRSmax and WRS65). This process continues iteratively,
where each step selects the feature that, when combined
with the previously chosen set, yields the lowest MAE.
TheMAE reaches its lowest point with the optimal feature
set in the fifth iteration, including WRSmax, WRS65,
FtT65(Mid), FtT65(High) and age, yielding an MAE (MAEmin)
of 9.6 pp with a standard deviation of ±0.7 pp. Beyond
this point, adding more features provided no further im-
provements and might have even slightly increased the
MAE. Finally, t-tests or rank-sum tests with Bonferroni
correction were conducted to determine up to which iter-
ation the MAE continued to decrease significantly. The
last iteration showing a significant improvement in MAE
was defined as the best trade-off between model com-
plexity and predictive accuracy, which occurred in the
third iteration including WRSmax, WRS65 and FtT65(Mid)
(MAEsig=9.8±0.7 pp).
The predictedWRS65(HA) is plotted against themeasured
WRS65(HA) in Figure 3 for a randomly selected subset of
test data from the third iteration, which represents the
significantly best-performing feature combination. The
correlation analysis revealed a strong correlation (r=0.93,

α=0.001), indicating a high degree of alignment between
themodel's predictions and the actual measured scores.

Discussion and conclusion
Demographic, audiological, and HA-related data from a
large cohort of HA users were analysed to identify key
factors influencing aided speech recognition. A Random
Forest Regression with iterative feature selection was
applied to determine the most predictive features.
When used as individual input features for the RFR,
demographic data such as sex, side, and age, as well as
HA manufacturer resulted in the poorest performance,
with an MAE of approximately 28 pp (see Figure 1). For
reference, a MAE of pp corresponds to completely
random predictions, for example, when both measured
( ) and predicted ( ) values are uniformly distributed from
0 to 100. To improve the interpretability of these features,
an auxiliary analysis was performed for each of the four
features: the original values were replaced with random
samples drawn from the same empirical distribution (i.e.,
probability density function, PDF) as the respective fea-
ture. Assuming statistical independence between and ,
the resulting MAEs were again close to 28 pp. This sug-
gests that the observed performance likely reflects a
statistical lower bound rather thanmeaningful predictive
power.
However, the authors were surprised that age did not
emerge as amore significant factor and leads to similarly
poor performance as the categorical features such as
sex, side, and HA manufacturer. This finding contrasts
with previous studies suggesting that age influences
WRS65(HA), with HA users aged 70 and older demonstrat-
ing significantly poorer outcomes compared to younger
users [3], [4]. On the other hand, Kronlachner et al.
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(2018) reported no significant effect of age onWRS65(HA)
among a cohort of seniors aged 65 to 88 years [5]. While
HA manufacturer was more similar to the demographic
data, other HA-related features such as HA experience,
and the nine fit-to-target values showed a continuous
improvement in MAE (25–21.1 pp). The analysis of the
audiological features yielded the best performance, with
WRS65 (15.1 pp), PTA (14.3 pp) and WRSmax (13.7 pp)
achieving nearly half the MAE compared to the demo-
graphic features.
In comparison, the generalised formula proposed by
Hoppe et al. (2014) offers a simple predictive approach
based solely on PTAmeasurements. This formula, derived
using logistic regression, was applied to our dataset
(n=635) and yielded an MAE of 14.4 pp [3]. This result
demonstrates that, despite the simplicity of the formula,
it achieves a prediction accuracy comparable to our audi-
ologic feature-basedmodel and closely matches theMAE
observed when using only PTA as the input feature for
the RFR in this study.
In order to reduce the MAE even further, the best-
performing feature of the first iteration was combined
with all of the remaining ones, to evaluate the best-
performing two-feature combination. Subsequently, the
best-performing three-feature combinationwas evaluated,
and this process repeated iteratively until a feature
combination yielding the lowest MAE across all 18 itera-
tions was identified (see Figure 2). The minimum MAE
(MAEmin=9.6 pp) occurred in the fifth iteration and included
WRSmax, WRS65, FtT65(Mid), FtT65(High) and age.
The statistical analysis revealed a statistically significant
improvement in MAE compared to the previous iteration
only up to the third iteration (MAEsig=9.8 pp), which ex-
cluded FtT65(High) and age. In general, including more
than five features did not lead to further improvements
in performance and even caused a slight decline due to
potential overfitting. However, fine-tuning the hyperpara-
meters in each iteration could still enhance the perfor-
mance of the RFR, but it would significantly increase the
computational effort. Notably, the three-feature combina-
tion from the third iteration resulted in a 4.6 pp improve-
ment over the model reported by Hoppe et al. (2014),
which only used PTA as an input feature [3]. Despite
PTA being the second-best single-performing feature, it
showed no significant influence on WRS65(HA) when
combined with other features. A possible explanation for
this could be the high correlation between PTA and both
WRSmax and WRS65, as reported in previous studies [3],
[4], [5], [6], [7], [8], [9]. Consequently, much of the infor-
mation provided by PTA may already be accounted for by
WRSmax and WRS65.
For the fit-to-target values, only those at 65 dB SPL input
level in the mid and high-frequency ranges showed an
influence onWRS65(HA). Digeser et al. (2020) highlighted
that adequate amplification in these frequency ranges
is crucial for speech recognition, particularly for high-
frequency speech cues [18]. To derive these fit-to-target
values, the mean differences between LTASS and pre-
scriptive target values of DSL v5.0 were used. While al-

ternative targets could be considered, a recently pub-
lished study demonstrated that, with a focus on 65 dB
SPL input levels, HA users with a close match to the DSL-
v5.0-targets exhibited consistently good speech recogni-
tion across all degrees of hearing loss [9].
This study demonstrated that parameters from audio-
metry, particularly WRSmax and WRS65, are the most influ-
ential predictors of WRS65(HA). While HA-related features
such as fitting accuracy in the 0.8–2.5 kHz frequency
range at 65 dB SPL input level performed poorly on their
own, their combination with audiological features signifi-
cantly improved model accuracy. This underscores not
only the relevance of feature interactions, but also the
important role of optimal HA fitting in achieving successful
HA outcomes.

Limitations of the study

Unfortunately, the influence of fit-to-target accuracy for
low and high input levels was not examined. However,
the results in this study suggested that the fit-to-target
values for these low and high input levels did not influ-
ence WRS65(HA), likely due to redundancy with the fit-to-
target values established for 65 dB SPL input level. Fur-
thermore, many of the features used in this RFR are likely
strongly correlated, leading to a certain degree of redun-
dancy within the overall feature set. A detailed correlation
analysis was not performed in this study.
Principal Component Analysis (PCA) was not applied in
this study, as the number of features was limited and
model interpretability was prioritised. However, future
work may include PCA or other dimensionality reduction
techniques to evaluate their effect onmodel performance.

Notes

Cumulative dissertation

The present work was performed in partial fulfillment of
the requirements for obtaining the degree “Dr. rer. biol.
hum.” at the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU).

Conference presentation

This contribution was presented at the 27th Annual Con-
ference of the German Society of Audiology and published
as an abstract [19].

Data availability

Raw data supporting the findings of this study are avail-
able from the corresponding author upon reasonable re-
quest.
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