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Abstract
Background: The ongoing coronavirus pandemic requires new disinfec-
tion approaches, especially for airborne viruses. The 254 nm emission
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of low-pressure vacuum lamps is known for its antimicrobial effect, but
Nicole Sieber1unfortunately, this radiation is also harmful to human cells. Some re-
Petra Vatter1searchers published reports that short-wavelength ultraviolet light in

the spectral region of 200–230 nm (far-UVC) should inactivate patho-
gens without harming human cells, whichmight be very helpful in many
applications. 1 Institute of Medical

Engineering andMethods: A literature search on the impact of far-UVC radiation on
pathogens, cells, skin and eyes was performed andmedian log-reduction
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of Applied Sciences, Ulm,
Germanydoses for different pathogens and wavelengths were calculated. Ob-

served damage to cells, skin and eyes was collected and presented in
standardized form.
Results: More than 100 papers on far-UVC disinfection, published
within the last 100 years, were found. Far-UVC radiation, especially the
222 nm emission of KrCl excimer lamps, exhibits strong antimicrobial
properties. The average necessary log-reduction doses are 1.3 times
higher than with 254 nm irradiation. A dose of 100 mJ/cm2 reduces all
pathogens by several orders of magnitude without harming human cells,
if optical filters block emissions above 230 nm.
Conclusion: The approach is very promising, especially for temporary
applications, but the data is still sparse. Investigations with high far-
UVC doses over a longer period of time have not yet been carried out,
and there is no positive study on the impact of this radiation on human
eyes. Additionally, far-UVC sources are unavailable in larger quantities.
Therefore, this is not a short-term solution for the current pandemic,
but may be suitable for future technological approaches for decontam-
ination in rooms in the presence of people or for antisepsis.
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Zusammenfassung
Hintergrund: Die anhaltende Coronavirus-Pandemie erfordert neue
Desinfektionsansätze, besonders für Viren in der Luft. Die 254 nm
Emission von Niederdruck-Quecksilberdampflampen ist bekannt für
ihre antibakterielle Wirkung, allerdings ist diese Art der Bestrahlung
auch für menschliche Zellen schädlich. Einige Forscher veröffentlichten
Berichte, dass kurzwelliges ultraviolettes Licht im Spektralbereich von
200–230 nm (Far-UVC) Krankheitserreger inaktiviert, ohne dabei
menschlichen Zellen zu schaden, was für viele Anwendungen sehr
hilfreich sein könnte.
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Methoden: Es wurde eine Literaturrecherche zum Einfluss von Far-UVC-
Strahlung auf Krankheitserreger, Zellen, Haut und Augen durchgeführt
und die log-Reduktionsdosen für verschiedene Krankheitserreger und
Wellenlängen berechnet. Beobachtete Schäden an Zellen, Haut und
Augen wurden gesammelt und in standardisierter Form dargestellt.
Ergebnisse: Insgesamt wurden mehr als 100 Arbeiten zur Far-UVC-
Desinfektion gefunden, die in den letzten ungefähr 100 Jahren veröf-
fentlicht wurden. Besonders 222 nm Emissionen von KrCl-Excimer-
Lampen weisen starke antimikrobielle Eigenschaften auf. Die durch-
schnittlich benötigten log-Reduktionsdosen sind um den Faktor 1,3
höher als bei einer 254 nm Bestrahlung. Eine Dosis von 100 mJ/cm²
reduziert alle Krankheitserreger um mehrere Größenordnungen, ohne
dabei menschliche Zellen zu zerstören, wenn langwellige Emissionen
über 230 nm durch optische Filter blockiert werden.
Schlussfolgerung: Der Ansatz ist sehr vielversprechend, speziell was
den zeitlich begrenzten Einsatz angeht, jedoch sind die hierzu verfügba-
ren Daten relativ spärlich. Untersuchungen mit hohen Far-UVC-Dosen
über einen längeren Zeitraum wurden noch nicht durchgeführt und es
gibt noch keine positiven Studien über den Einfluss dieser Strahlung
auf das menschliche Auge. Zudem sind Far-UVC-Quellen nicht in größe-
ren Mengen verfügbar. Daher stellt das keine kurzfristige Lösung für
die aktuelle Pandemie dar, aber ist vielleicht geeignet für künftige
technologische Lösungen zur Dekontamination in Räumen in Anwesen-
heit von Menschen oder zur Antiseptik.

Schlüsselwörter: Strahlungsdesinfektion, Far-UVC, Excimer-Lampen,
222 nm, Coronavirus, Influenzavirus

Introduction
The ongoing severe acute coronavirus (SARS-CoV-2)
pandemic is currently leading to an intensified worldwide
search for approaches to inactivate viruses and other
pathogens, especially in the air. The antimicrobial proper-
ties of ultraviolet radiation frommercury vapor lamps are
well known and have been applied for over a hundred
years [1]. They have also proven to be effective against
coronaviruses [2], [3].
Mercury vapor lamps exhibit an emission peak at 254 nm
in the ultraviolet spectral range, known as UVC, which
extends from 200 to 280 nm. This radiation is absorbed
by deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)
and leads to DNA and RNA damage, e.g., the formation
of pyrimidine dimers [4], [5], [6].
Unfortunately, this radiation is also harmful to human
cells and tissue, which also contain DNA. The possible
consequences of skin irradiation include erythema forma-
tion and potentially carcinogenic mutations, while pho-
tokeratitis is among the potential eye lesions [7], [8], [9].
In 2004, Sosnin et al. [10] published an investigation on
the impact of short-wavelength (206 nm) UVC light on
Chinese hamster ovary (CHO) cells and with 222 nm irra-
diation of Escherichia coli (E. coli). While the E. coli were
reduced bymore than 3 orders ofmagnitude using a dose
of 100 mJ/cm2, there was no detectable damage to the
CHO cells for doses up to 400 mJ/cm2. Consequently,
Sosnin et al. suggested applying this short-wavelength
UV light for wound decontamination to prevent surgical
site infections. This idea was examined more closely by

Buonanno et al. [11], [12]. They also coined the term “far-
UVC” for short-wavelength UVC light in the range between
approximately 200 and 230 nm. In subsequent publica-
tions, Welch et al. and Buonanno et al. demonstrate that
this far-UVC light seems suitable for the inactivation of
influenza and coronaviruses in the air at doses that do
not damage human cells [13], [14].
This advantageous characteristic of far-UVC radiation is
probably due to the strong protein absorption (Figure 1A)
and the larger size of human cells compared to most mi-
croorganisms. While bacteria or viruses (typical diameter
1 µm and 0.1 µm, respectively) are irradiated completely
and without much attenuation, less than 5% of far-UVC
radiation reaches the center of a mammalian cell with a
typical diameter of more than 10 µm [15]. Human skin
is assumed to be further protected against far-UVC radi-
ation by the stratum corneum, the outermost layer of the
epidermis, consisting of dead keratinocytes that absorb
most of the ultraviolet radiation (Figure 1B) [11], [16],
[17]. Additionally, for the eye, it is supposed that it is the
cornea and its tear layer that protects the lens by absorb-
ing far-UVC radiation [11], [13], [18].
The promising reports on the effects of far-UVC on cells,
tissue and pathogens – including coronaviruses – give
reason to hope that this radiation might become a very
important tool in the fight against airborne pathogens
and especially SARS-CoV-2 in the current pandemic.
However, there still seems to be only a very limited num-
ber of animal or human studies; among them, there exists
at least one investigation describing the formation of
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Figure 1: A: Absorption spectra of DNA and proteins, with emission spectra of a KrCl excimer and a low-pressure mercury lamp
(Hg lamp); B: Scheme of far-UVC propagation in skin and pathogens

erythema and cyclobutane pyrimidine dimers (CPD) after
222 nm irradiation [19].
The aim of this study was to collect and analyze the re-
sults published to date on the impact of far-UVC in the
spectral region between approximately 200 and 230 nm
on pathogens, animal and human cells, skin and eyes,
as well as to find further information regarding the safety
of this kind of radiation and acquire data to determine
the necessary doses for pathogen reductions.

Materials and methods
A search was performed in PubMed and Google Scholar
using various combinations of the following terms:

• “far-UVC”,
• “deep UV”,
• “excimer lamp”,
• “207 nm”,
• “211 nm”,
• “222 nm”,
• “230 nm”,
• “disinfection”,
• “inactivation”,
• “photoinactivation”,

• “action spectrum”,
• “cells”,
• “skin”, and
• “eye”.

References in the retrieved literature were examined for
their possible inclusion in this study. References citing
the identified literature were also checked.
The results were divided into microorganisms (including
bacteria, bacterial spores, fungi, viruses, and protists),
human and animal cells, skin and eye. If results on mi-
croorganism inactivation for different irradiation doses
were published in one report, those describing a reduction
by approx. 3 log levels were selected, and the necessary
dose for a 90% (1 log-)reduction was calculated. Results
presented only as figures without exact values in the text
or tables were read from enlarged figures. Combinations
of different inactivation techniques were ignored, as were
different reactivation approaches after irradiation. Only
experiments with irradiation wavelengths between 200
and 235 nm were included in the analysis and divided
into sections termed “210 nm” (200–215 nm), “222 nm”
(216–225 nm) and “230 nm” (226–235 nm) for simpli-
fication.
For comparison with the effect of mercury vapor lamp
emissions, a fourth section termed “254 nm”
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(248–259 nm) was included in the data collection, but
no extensive literature search was performed for this
wavelength. In case the far-UVC study was not accompan-
ied by 254 nm results, other literature values were con-
sulted. If there were multiple results for one microorgan-
ism, the median values were calculated to reduce the
influence of outliers caused by stronger absorbingmedia
or mutants with higher or lower UVC sensitivity.

Results

Inactivation of Microorganisms

More than 100 studies on the impact of far-UVC radiation
on microorganisms were found in the literature. Among
them, many investigations dated from the first half of the
last century and some were even performed about a
hundred years ago, an impressive accomplishment con-
sidering the available (lamp) technology at that time.
Unfortunately, not all of these investigations could be in-
cluded in the following analysis because the inactivated
microorganisms were not determined, or the inactivation
doses were given in dimensions such as energy per
volume, which could not be converted to today’s typical
dose dimension of energy per area [20], [21], [22], [23],
[24], [25]. The more recent far-UVC investigations were
mostly performed with krypton chloride (KrCl) excimer
lamps with a peak emission at 222 nm. Only a few re-
searchers applied a broadband UVC source in combina-
tion with amonochromator or optical filters or even lasers.
The data collection – about 250 single far-UVC results
for 14 bacterial species, 9 bacterial spores, 5 fungi, 23
viruses and one protist – can be found in Table 1, divided
into bacteria, bacterial spores, fungi, viruses, and protists
and sorted by microorganism, wavelength and media (L:
liquid, S: surface, A: air/aerosol), which were in most
cases liquids (salt solutions). For each microorganism
(species), the median value for the log-reduction dose
was determined and compared to the median log-reduc-
tion dose for the wavelength of 254 nm of mercury vapor
lamps by calculation of the log-reduction dose ratio.

Impact of far-UVC on human and animal
cells, skin and eye

For the impact on human and animal cells, skin and eye,
only 15 publications could be retrieved. Most of them are
of recent origin, but one impressive study was performed
almost 90 years ago.
The results are listed in Table 2, which is divided into ex-
periments involving “cells”, “skin” and “eyes”. Unfortu-
nately, the comparison of the different results is compli-
cated by the authors’ investigation of different possible
observable phenomena, such as cell number/viability,
epidermal thickening, dimer formation and erythema
formation. Therefore, not all examined parameters are
listed in Table 2 but only the most frequently mentioned
ones, e.g., cyclobutane pyrimidine dimer (CPD) formation.

Discussion

Inactivation of Microorganisms

There are large variations in the necessary far-UVC log-
reduction dose between different microorganisms and
sometimes even between different strains of one species,
but in all reports, far-UVC is a very powerful antimicrobial
radiation.
Additional differences can be found for different media.
The observed reduction doses of pathogens in the
air/aerosols are very low (about 1 mJ/cm2), but unfortu-
nately this is based on only two investigations on human
coronaviruses and influenza virus. Most results are
available for microorganisms in liquids and in about 10
cases on surfaces, withmuch higher necessary irradiation
doses for these surfaces. Most of these surfaces were
not totally smooth, but exhibited pores, such as different
natural skins or agar, which may have provided a kind of
shade against the far-UVC irradiation.
Nevertheless, for 2/3 of bacteria, bacterial spores, fungi,
viruses, and protists, a dose of 10 mJ/cm2 is sufficient
for a 90% or higher reduction for all media. With a dose
of 100 mJ/cm2, almost all examined pathogens are inac-
tivated by several orders of magnitude.
The antimicrobial property of 254-nm irradiation is as-
sumed to be mostly based on DNA or RNA damage [4],
[26], [27], [28], [29], [30], [31], [32]. However, if the far-
UVC inactivation mechanism were caused by DNA/RNA
damage alone, far-UVC should be much less effective
than 254 nm radiation, because of the lower DNA and
higher protein absorption at shorter wavelengths (see
Figure 1) and the lower number of incident photons per
mJ at this wavelength compared to 254 nm.
In fact, higher average necessary log-reduction doses in
liquids were observed for all far-UVC wavelengths. The
calculated required increase is 1.8, 1.3, and 3.3 times
higher for 210 nm, 222 nm, and 230 nm, respectively,
compared to the 254 nm log-reduction doses. These
values are not very precise, especially those for 210 nm
and 230 nm, because of the very limited available data.
Nevertheless, 222 nm irradiation seems to be more ef-
fective than 210 and 230 nm.
The more comprehensive 222 nm results in liquids even
allow to distinguish between the log-reduction doses ne-
cessary for the different types of pathogens: bacteria
x1.2, bacterial spores x0.7, fungi x1.1 and viruses x1.7.
Thus, 222 nm irradiation seems to be especially suited
for spore inactivation.
Deviations from the expected damage caused only by
DNA destruction are suspected to have their origin in the
additional protein absorption and lethal protein damage
[11], [33], [34], [35].
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Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D)
viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)
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(Continued)
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D)

viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)
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Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D)

viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)
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Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D)

viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)
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Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D)

viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)
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Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D)

viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

10/17GMS Hygiene and Infection Control 2021, Vol. 16, ISSN 2196-5226

Hessling et al.: The impact of far-UVC radiation (200–230 nm) on pathogens, ...



(Continued)
Table 1: Far-UVC inactivation data for different microorganisms and wavelengths: A) bacteria, B) bacterial spores, C) fungi, D)

viruses and E) protists; (L: liquid, S: surface, A: air/aerosol)

Impact of far-UVC on human and animal
cells, skin and eye

The investigations listed in Table 2 are not very numerous
andwere performed on different kinds of research objects
(cells, skin, eyes) and analyzed for different parameters
(CPD, erythema, cell survival and other kinds of damage),
which makes comparison difficult. However, at least for
skin, there is a rather complete data set on CPD formation
and some complementary results on erythema; further-
more, the corresponding irradiation doses are available
for all lesions that occurred.
The majority of the presented studies conclude that hu-
man and animal cells can tolerate far-UVC doses of
150 mJ/cm2 for 207 nm irradiation – and probably even
much higher ones for 222 nm – without damage such as
dimer formation, erythema or increased cell death. This
irradiation dose is much higher than 1.7mJ/cm2, the only
222 nm dose published to date for a 3 log-reduction of
coronaviruses in aerosols, and still many times above the
previously mentioned 10 mJ/cm2 for a one log-reduction
of 2/3 of the pathogens in Table 2. In fact, even
100 mJ/cm2, the dose necessary to inactivate all listed
microorganisms by several orders of magnitude, seems
to be harmless according to themajority of investigations.
Unfortunately, these investigations stand in contrast to
at least five studies in which cell lesions were observed
at much lower doses [19], [36], [37], [38], [39], in two of
these even for doses below 1 mJ/cm2 [36], [37].

One reason for this apparent contradiction regarding the
experiments on chicken embryo cells, Chinese hamster
ovary cells and grasshopper neuroblasts might be the
different cell types and the lack of protection by the
stratum corneum or tear layer. For the study by Woods
et al. – one of only three studies on real human skin – it
is speculated that the observed CPD and erythema
formation at low doses might be caused by the longer UV
wavelength emission of the KrCl excimer lamp. In contrast
to many other setups, Wood et al. employed no optical
filter to block emissions of longer UVC wavelengths. As
can be concluded from Table 2, even low doses of lamp
emissions around 254 nmwould lead to cell lesions. This
assumption of negative effects of longer wavelength
emissions is supported by the results of Yamano et al.
[40], who worked with different long-wavelength cut-off
filters and observed better results (no lesions even at
very high far-UVC doses) with improved filters. Unfortu-
nately, the exact radiation spectra for Pitts’ eye experi-
ments are unknown; therefore it cannot be clarified
whether their light source also emitted at longer
wavelengths, which would have solved the last contradic-
tion.
It is noticeable that most positive studies were conducted
with the participation or support of Ushio, the leading
manufacturer of far-UVC lamps, which might raise suspi-
cions. In fact, the involvement of Ushio has probably in-
fluenced the results, but only by providing advanced lamp
and filter techniques, as can be seen in the study by
Yamano et al., [40] with two different Ushio lamp proto-
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Table 2: Impact of far-UVC on human and animal cells (A), skin (B), and eye (C)
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Table 2: Impact of far-UVC on human and animal cells (A), skin (B), and eye (C)
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types which had different filter properties concerning
transmission above 250 nm.
However, even if the results of these 5 studies could be
invalidated by cell type, protection and long-wavelength
emissions, the fact remains that the total number of
successful studies is quite small to date. Studies on the
impact of 222 nm irradiation on the human eye have not
yet been carried out at all, and among the skin investiga-
tions, only two positive ones have been performed on
humans. One of these used very high doses of up to
18,000 mJ/cm2 [41], but only on a single person. A daily
exposure to far UVC radiation for several years might
result in much higher total doses. Another aspect that
has not been investigated yet is the potential impact of
a repeated far-UVC skin irradiation on the skin’s microbi-
ome, which might shift towards more far-UVC resistant
microorganisms.

Conclusions
Far-UVC – especially at a wavelength of 222 nm – is very
effective against all pathogens. The average necessary
log-reduction doses are slightly higher compared to UVC
irradiation with a 254 nm low-pressure mercury vapor
lamp. A dose of 100 mJ/cm2 should reduce most patho-
gens in most media by several orders of magnitude
without harming human skin or eyes. Therefore, the pre-
vention of surgical site infections by far-UVC irradiation
– as suggested by Sosnin et al. [10] and Buonanno et al.
[11] – seems to be very plausible and attractive.
Far-UVC also raises hopes in the fight against viruses, as
suggested by Welch et al. [13] and Buonanno et al. [14],
but it will probably not offer a short-term, large-scale
solution for two reasons:

1. The safety of far-UVC irradiation is not yet guaranteed,
despite the predominantly very positive results of the
last years. Even if the few observed lesions are due
to avoidable long-wavelength UVC emissions, even
the successful studies were only carried out with lim-
ited doses and durations and only in two successful
studies on humans. These do not yet exclude possible
damage in applications over long periods of time
(months to years) with even higher total doses.

2. Mercury vapor lamps are readily available worldwide
in all wattages. This does not apply to far-UVC sources.
Far-UVC LEDs currently have outputs in themW range
and lifetimes of hundreds of hours. This means that
suitably powerful LED light sources are still years
away. Excimer lamps, which were also used in most
of the studies presented, are much more highly de-
veloped and have lifetimes of 10,000–100,000
hours. However, they are only commercially manufac-
tured by a handful of companies worldwide and are
only available in very limited quantities.

Therefore, this is not a short-term solution for the current
pandemic, but may be suitable for future technological

approaches for decontamination in rooms in the presence
of people or for antisepsis.
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