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Background: Gastric cancer and peptic ulcers can both be caused by
Helicobacter pylori (H. pylori). The complexity of such a bacterium has
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Zusammenfassung
Hintergrund: Sowohl Magenkrebs als auch Magenulzera können durch
Helicobacter (H.) pylori verursacht werden. Aufgrund der Komplexität
dieses Bakteriums ist es schwierig, eine wirksame Behandlung zu ent-
wickeln. Ein computergestützter Ansatz zur Entwicklung von Antigenität,
Stabilität und Sicherheit von Impfstoffen gegen diesen Erreger wird
daher bei der Behandlung der damit verbundenen Krankheiten helfen.
Methode: Für die Untersuchung wurden zwei H. pylori-Proteine, SabA
und BabA, für die Epitopvorhersage ausgewählt. Es wurde eine immun-
informatorische Plattform verwendet, um einen Untereinheit-Impfstoff
gegen H. pylori zu entwickeln. Die besten Epitope für Helfer-T-Lympho-
zyten (HTLs) und zytotoxische T-Lymphozyten (CTLs) wurden nach Anti-
genität, Toxizität und Allergenität ausgewählt. Die ausgewählten Epitope,
geeignete Links und Adjuvantien wurden kombiniert, um ein endgültiges
Impfstoffdesign zu erstellen. Die Antigenität, Allergenität und die physi-
kochemischen Eigenschaften des Impfstoffs wurden bewertet.
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Ergebnisse:Die 3D-Struktur des Impfstoffs wurde vorausberechnet. Für
den Multiepitop-Impfstoff wurden molekulare Andock-Analysen und
Molekulardynamiksimulationen (MD) durchgeführt. Der Impfstoffkandi-
dat wurde in silico in den pET28a (+)-Vektor geklont.
Schlussfolgerung: Der endgültige Impfstoffentwurf ist als wirksamer
prophylaktischer Impfstoff gegenH. pylori geeignet. Um dieWirksamkeit
des Impfstoffs zu bewerten, sind In-vivo- und In-vitro-Versuche erforder-
lich.

Schlüsselwörter:Helicobacter pylor, multiepitop Impfstoff, Magenkrebs,
molekulare Andock-Analysen, molekulare Dynamik, SabA, BabA

Background
The most prevalent chronic infectious illness in the world
is caused by Helicobacter (H.) pylori, which influences
around 44.3% of the global population [1].H. pylori infec-
tions are more prevalent in less developed nations than
in more advanced ones. It was estimated that 54% of Ir-
anians were infected with H. pylori [2]. Peptic ulcers and
chronic gastritis are just two of the many gastrointestinal
disorders linked to H. pylori infection. Gastric intestinal
metaplasia (GIM) or chronic atrophic gastritis (AG) are
two forms of gastritis that were linked to a higher cancer
risk [3]. Despite several problems, including the spread
of antibiotic resistance, H. pylori infections are currently
typically treated with a triple antibiotic regimen [4], [5].
However, in recent years, antimicrobial resistance to H.
pylori has increased globally. Recent data from throughout
the world shows that the effectiveness of antibiotics used
to treat H. pylori infections has drastically decreased [6].
Gastric cancer prevention recommendations call for H.
pylori eradication in population groups with a high risk of
contracting the disease [7]. To date, no licensed vaccine
candidates against H. pylori exist. Therefore, creating a
prophylactic vaccine to prevent H. pylori infection may be
a practical and affordable method of doing so-called
epitope-based vaccines, which represent an exciting new
approach to creating a distinctive and effective vaccine
[8]. These vaccines have piqued the interest of research-
ers because of their safety, specificity, stability, and low
manufacturing cost [9]. Antigen target screening is critical
for generating an effective epitope-based vaccine and is
essential for vaccine development. In recent years, re-
verse vaccinology based on bioinformatics has been
successfully employed to predict epitopes.
An epitope is the antigenic portion of a pathogen that is
recognized by the host's immune system [10]. Immunoin-
formatics methods have been created to anticipate the
most effective immunogenic epitopes. Immunoinformatics
is a precise, reliable, and rapid approach to creating
vaccines against pathogens. Until now, several multi-
epitope vaccines have been developed against bacteria
such as Escherichia coli (E. coli), Leptospira spp., and
Mycobacterium abscessus [11], [12], [13]. In addition,
several epitope-based vaccines against H. pylori have
been created [14], [15], [16], [17].
Sialic acid-binding adherence (SabA) and blood-group
antigen-binding adhesion (BabA) of H. pylori have been

proposed as attractive options forH. pylori vaccine devel-
opment [18], [19], [20]. BabA and SabA have a vital part
in binding H. pylori to human gastric tissues, because
binding is the first step in H. pylori fixation and coloniza-
tion. As a result, due to the crucial function of BabA and
SabA for successful colonization and persistent infection,
these antigens can be regarded ideal candidates for de-
veloping vaccines [20].
Innate immunity is triggered and the adaptive immune
response is synchronized by toll-like receptors (TLRs) [21].
One of the TLRs important in creating immune responses
against bacteria is TLR4. Immune cells, e.g., immature
dendritic cells (DCs), monocytes, macrophages, as well
as granulocytes, express TLR-4 [22]. TLR4-mediated re-
cognition of H. pylori LPS was demonstrated for the first
time by Kawahara et al. [23]. Given the background
mentioned above and regarding the part of H. pylori in
developing gastric cancer, we aimed to develop aH. pylori
epitope-based vaccine using the immunoinformatic ap-
proach.

Methods
Two proteins from H. pylori, BabA and SabA, were em-
ployed in the present work to predict t-cell epitopes for
creating the final vaccine. The epitopes were connected
with the vaccine candidate’s design utilizing suitable
linkers. To validate the vaccine design, we conducted
molecular docking, molecular dynamic simulations, as
well as in silico cloning.

Retrieval of protein sequence

NCBI (https://www.ncbi.nlm. nih.gov/) provided BabA
(NP_045512.2) and SabA (NP_045512.2) amino acid
sequences from H. pylori in FASTA format.

Identification and selection of T-cell
epitopes

Using NetCTL 1.2, the target proteins, CTL epitopes were
identified (http://www.cbs.dtu.dk/services/NetCTL/). The
12 MHC class I supertypes are the only ones for which
such server could anticipate CTL epitopes (9-mer). In the
present work, the epitope prediction threshold was estab-
lished as 0.75. The HTL epitopes were recognized by the
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NetMHCII 2.3 server (http://www.cbs.dtu.dk/services/
NetMHCII/). This server uses artificial neural networks to
anticipate how HTL epitopes (15-mer) will interact with
HLA-DR, HLA-DP and HLA-DQ. Threshold values of strong
and weak binders were established as 2% and 10%, re-
spectively, in this investigation. Antigenicity, toxicity, and
allergenicity tests were conducted on them in order to
identify the optimal epitopes. Using protein sequences
translated to uniform vectors with significant amino acid
traits based on auto cross-covariance (ACC), the VaxiJen
v2.0 server (http://www.ddg-pharmfac.net/vaxijen/
VaxiJen/VaxiJen.html) anticipates epitope antigenicity.
In both validations, the model performed well with a pre-
diction accuracy between 70% and 85% [24]. The Toxin-
Pred server (http://crdd.osdd.net/raghava/toxinpred/)
was employed to evaluate the toxicity of the anticipated
epitopes. Thus, the server predicts essential physical and
chemical traits plus toxicity [25]. Using the AllerTOP v.2.0
server, the allergenicity of the predicted epitopes was
further evaluated (https://www.ddg-pharmfac.net/
AllerTOP/). This technique is supported by the ACC
translation of protein sequences to uniform vectors with
similar lengths [26].

Construction of themulti-epitope vaccine

A multi-epitope vaccine construct was created utilizing
HTL and CTL epitopes selected in an earlier step. All of
the chosen epitopes were linked using various linkers.
Thus, HTL epitopes were joined together utilizing GPGPG
linkers, whereas CTL epitopes were connected using AAY
linkers. Linkers are employed forminimizing the possibility
of producing junctional antigens as well as for enhancing
the presentation and processing of antigens [27]. Also,
the immunogenicity of multi-epitope vaccines may be
improved by using proper linkers [28].

Evaluation of the antigenicity,
allergenicity, and physicochemical
properties of the designed vaccine

To predict the antigenic behavior of the final vaccine
design, two servers were used: ANTIGENpro (http://
scratch.proteomics.ics.uci.edu/) as well as VaxiJen v2.0.
Furthermore, the AllerTOP v. 2.0 and ToxinPred servers
were employed to evaluate the allergenicity and toxicitiy
of the vaccine construct, respectively. The Expasy Prot-
pram server (https://web.expasy.org/protparam/) was
employed to characterize several physicochemical char-
acteristics, such as molecular weight, theoretical pI, in-
stability index, aliphatic index, as well as grand average
of hydropathy (GRAVY).

Prediction of the secondary structure

The Prabi server (https://npsa-prabi.ibcp.fr/cgi-
bin/npsa_automat.pl) was utilized to anticipate the vac-
cine construct’s secondary structure. This server predicts

a secondary structure using the GOR IV approach with a
64.4% average accuracy [29].

Tertiary structuremodeling, refinement,
and validation of the multi-epitope
vaccine

The I-TASSER server (https://zhanglab.ccmb.med.
umich.edu/I-TASSER/) was utilized to generate the vac-
cine construct’s final three-dimensional model. Thus,
I-TASSER is a system for generating accurate models of
protein tertiary structures from their amino acid se-
quences. This server reconstructs segments clipped from
threading templates to produce 3D models based on an
amino acid sequence, and it then assigns a C-score to
each model to indicate its level of quality [30]. After that,
the protein structural-refinement server 3D-refine server
(http://sysbio.rnet.missouri.edu/3Drefine/) was used.
The 3D-refinemethodology performs the iterative optimi-
zation of the hydrogen bonding network, as well as
atomic-level energy reduction on the optimized model in
order to effectively enhance protein structures [31]. Both
the ProSA-web server (https://prosa.services.came.
sbg.ac.at/prosa.php) and the SAVES v6.0 server
(https://saves.mbi.ucla.edu/) were used to validate the
models. Based on the total quality of the protein model,
the ProSA server determined z-scores for each protein
model. Any structure with a Z-score beyond the typical
range is likely to be flawed [32]. The SAVES v6.0 server
analyzes the geometry of residues as well as the total
structural geometry to rate the stereochemical quality of
a protein structure [33].

Molecular docking

ClusPro 2.0 server (https://cluspro.org/login.php) has
been utilized for assessing the contact among the TLR4
and vaccine construct (PDB ID: 4G8A). This server is a
docking server for two interacting proteins. The ClusPro
server, which is frequently used for the docking homology
model, constructs structures using three separate coeffi-
cient sets [34].

Molecular dynamics simulation

GROMACS 5.1.1 software and GROMOS96 54a7 force
field were used for molecular dynamics simulation (MD).
The GROMACS program forecasts ligand and receptor
behavior over time utilizing Newton’s equations of atomic
and molecular motion [35], [36]. Using the SPC/E water
model, MD simulations were performed between TLR4
and the vaccine construct, as well as the complex of the
TLR4-vaccine construct. Van der Waals interactions and
hydrogen bonds that developed among complex and
water molecules were deleted during the energy minimi-
zation of the structures using the steepest descent
methodology. Thereafter, the temperature was gradually
increased from 0 to 300 K, bringing the system to equi-
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librium at constant pressure, with both phases at 100 ps,
in a constant volume. The MD simulation took place for
30 ns at a temperature of 300 K. The root mean square
fluctuation (RMSF), root mean square deviation (RMSD)
and radius of gyration (Rg) of the ligand and receptor
complex were then determined.

Codon optimization and in silico cloning
of the final vaccine construct

For codon optimization along with reverse translation of
vaccine components, the Java Codon Adaptation Tool
(JCat) (http://www.jcat.de/) was employed [37]. The the
codon adaptation index (CAI) along with GC content are
two parameters that influence protein expression. An in-
creased chance of protein expression is indicated by a
CAI value >0.8. Any gene should have a GC content of
between 30% and 70% to produce proteins effectively
[38], [39]. In the present work, the vaccine construct’s
main sequence was enhanced by using E. coli strain K12
as the host organism. Finally, using the restriction en-
zymes BamHI and XhoI, the optimized codon sequence
was cloned to the pET28a (+) vector utilizing the Snap-
Gene program.

Results

Selected T-cell epitope

Utilizing the NetCTL 1.2 server, sixty CTL epitopes were
predicted for the BabA and SabA proteins. The anticipated
epitopes underwent several tests. The initial set of epi-
topes chosen can bind to three or more MHC class I su-
pertypes. The antigenicity, allergenicity, and toxicity of
these epitopes were then assessed utilizing the VaxiJen
v2.0, AllerTOP v2.0 and ToxinPred v2.0 servers. Finally,
a CTL epitope was determined for both BabA and SabA
(Table 1). Here, 90 HTL epitopes for BabA and SabA pro-
teins were predicted using the NetMHCII 2.3 server, and
17 epitopes that might attach to a minimum of 3 MHC
class-II alleles were examined for antigenicity, toxicity,
and allergenicity. As a result of these tests, we were able
to narrow down the pool of potential HTL epitopes to just
two for BabA and three for SabA (Table 2).

The multi-epitope vaccine construct

By other resaercher a multi-epitope vaccine design has
been frequently produced by mixing two CTL epitopes
along with five HTL epitopes, utilizing the GPGPG and AAY
linkers, respectively. When epitopes and linkers were
fused, a 130-amino-acid sequence resulted. Then, we
opted for the L7/L12 protein from the 50S ribosomal
subunit (Accession no. P9WHE3) to boost immunogenicity.
After that, epitopes for CTLs and HTLs were included. To
complete the purification process, the C-terminal region
received a 6x-His tag (Figure 1).

Evaluation of the physicochemical
properties, antigenicity, allergenicity, and
solubility of the construct

The physicochemical traits of the designed vaccine were
determined using the ProtParam server (Table 3). The
ultimate multi-epitope vaccine has a total of 260 amino
acids. The vaccine has a GRAVY score of –0.385, which
indicates how hydropathic it is, and an aliphatic index of
65.15. High aliphatic index proteins are more durable
across a wider temperature range. The multi-epitope
vaccine has a total of 294 amino acids. Thus, the theoret-
ical pI and molecular mass of the vaccine design were
found to be 6.25 and 26.14 kDa, respectively. It has been
determined that the instability index is 17.09. This means
that the protein is considered stable. Heterologous expres-
sion within bacteria and yeast requires a long half-life.
The vaccines’ half-lives in mammalian reticulocytes in
vitro, yeast and E. coli in vivo were determined to be 30
hours, 20 hours, and 10 hours, respectively. The vaccine
design’s antigenicity was assessed utilizing the servers
ANTIGENpro and VaxiJen v2.0. VaxiJen v2.0 and
ANTIGENpro estimated the antigenicity to be 1.0721 and
0.941287, respectively. The AllerTOP v. 2.0 server was
employed to test the recommended vaccine for allergen-
icity, and the findings revealed that it was hypoallergenic.
The SOLpro server predicted solubility while overex-
pressed in E. coli with a very high degree of accuracy
(0.968397). A projected scaled solubility value of 0.609
was likewise reported by the Protein-sol service (Figure 2).
Scaled solubility values over 0.45 are anticipated to
possess better solubility in comparison to the typical ex-
perimentally soluble E. coli protein, while scaled solubility
values below 0.45 are predicted to possess less solubility.
Thus, the experimental data set’s PopAvrSol population
average is 0.45.

Figure 2: Solubility diagram ofmulti-epitope vaccine calculated
via Protein-Sol server
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Figure 1: An illustration of the multi-epitope vaccine’s structural organization

Table 1: Anticipated CTL epitopes of BabA and SabA proteins

Secondary and tertiary structures,
refinement, and validation of the
construct

The Prabi server was employed to determine the second-
ary structure components’ percentage in themulti-epitope
vaccine. Extended strand (20%), random coil (23.85%),
and alpha-helix (56.15%) were all predicted structures
(Figure 3). The 3-dimensional structure of vaccine con-
struct was modeled five times by the Robetta server. The
model having the highest C-score out of five was picked.
The higher C-score for the model denotes a high degree
of confidence, with the C-score often falling between 5
and 2 [40]. As a result, we chose model 1. The Chimera
1.15rc software was used to visualize 3D vaccine con-
struction models [41] (Figure 4). The 3D-refine server
then refined the model. The 3D-refined score, GDT-TS,
RMSD, GDTHA, RWPlus and MolProbity were all provided
by this server with varied parameters (Table 4). Better
model quality is indicated by stronger GDT-TS, RMSD and
GDT-HA values and weaker 3D-refine scores, MolProbity
and RWplus values. Based on the factors listed above,
refinedmodel 5 was chosen (Figure 4). We also compared
the total quality of the multi-epitope vaccine’s protein
structure before and after the refinement using the ProSA-
web and SAVES v6.0 servers. Then, themodifiedmodel’s

Z-score was –4.96 (Figure 4). The total quality of the
multi-epitope vaccine’s protein structure was compared
before and after the refining procedure using the ProSA-
web and SAVES v6.0 servers. Thus, the Z-score for the
improved model was –4.96 (Figure 4). The
Ramachandran plot produced via the SAVES v6.0 server
shows that the first model had 90.4%, 9.6%, 0.0%, and
0.0% of the residues present in the favored, additional
allowed, generously allowed, and disallowed regions, re-
spectively (Figure 4), whereas the refined model had
91.8%, 8.2%, 0.0%, and 0.0% of the residues present,
respectively (Figure 3).

Molecular docking

The receptor and ligand were docked to each other after
the preparation process, then the best complex was re-
fined. The degree of binding and the strength of the inter-
action between the two components are defined by the
binding energy, which in this study showed the values of
–11.78, –13.15, and –42.91 for the binding of multi-
epitope to all three receptors, TLR4, MHCI, and MHCII,
respectively. Here, these binding affinities were scored
based on different energies, including van der Waals,
partial electrostatic, aliphatic, and other strong bonds.
Then, the binding of this epitope to the receptors was
checked schematically (Figure 5, Figure 6, and Figure 7)
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Table 2: Anticipated HTL epitopes of BabA and SabA proteins
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Table 3: The ProtParam server was used to determine a number of the designed vaccine’s physicochemical traits.

Table 4: Outcomes of the model's refinement. Models of better quality have lower RWplus and MolProbity values and stronger
GDT-TS, GDT-HA, and RMSD values

Figure 3: Graphic depiction of the secondary structure of the multi-epitope

and then the protein-protein docking was checked in
terms of amino acid involvement. Figure 5, Figure 6, and
Figure 7 show that significant amino acid involvement
exists for two immune system receptors, TLR4 andMHCII.

MD simulation

The MD simulation revealed the function of the studied
protein construct, the interactions involved, and the pro-
tein structure’s stability. The result analysis of the multi-
epitope and immune receptor complex studied here
showed that the docked construct has relative stability
after minimizing energy and reaching equilibrium. The
RMSD plot shows that the docked structure stabilized
after approximately 5 ns (Figure 8A). Also, the average of

the last 5 ns shows the value of 0.791±0.023. The RMSF
plot that shows atomic fluctuations representing an MD
for 30 ns of both multiepitope and TLR-4 demonstrated
that the binding of multiepitope to TLR-4 resulted in a
decreased flexibility of the residues and a relative stability
(Figure 8B). Moreover, for further analysis, the Rg plot
complex after an MD 30 ns was also drawn (Figure 8C)
and showed an average value of 4.213±0.014 for the
last 5 ns, which together show relatively high compact-
ness for this complex.

In silico cloning

The multi-epitope vaccine’s codon optimization and re-
verse translation were conducted by JCat. The CAI of the
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Table 4: Outcomes of the model’s refinement. Models of better quality have lower RWplus and MolProbity values and stronger
GDT-TS, GDT-HA, and RMSD values
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Figure 5: 3D and 2D diagram of docked complexes of multi-epitope structure and immune receptors – Multi-epitope TLR4
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Figure 6: 3D and 2D diagram of docked complexes of multi-epitope structure and immune receptors – Multi-epitope MHCI
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Figure 7: 3D and 2D diagram of docked complexes of multi-epitope structure and immune receptors – Multi-epitope MHCII
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Figure 8: RMSD (A), RMSF (B), and radius of gyration (C) of the multi-epitope as well as immune receptor (TLR4) complex
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Figure 9: SnapGene software (https:// www. snapgene. com/free- trial/) in silico cloning map of the multi-epitope vaccine into
the pET28a (+) vector. The red arc is the vaccine’s structure, and the black arc is the backbone of the vector.

improved vaccine nucleotide sequence is 1.00, and its
GC content is 51.28%. The vaccine design was then vir-
tually cloned in the pET-28 (+) vector utilizing the Snap-
Gene program (Figure 9).

Discussion
Infection with H. pylori has been related to a variety of
gastrointestinal disorders, including peptic ulcers and
chronic gastritis. Both cancer and precancerous lesions,
e.g., chronic atrophic gastritis (AG) or gastric intestinal
metaplasia (GIM), have been linked to it [3]. To prevent
issues with antibiotic therapy forH. pylori infection (recur-
rence, increasing resistance, flora disruptions, etc.),
vaccines may be a preferable choice, also due to their
safety and effectiveness [42]. Conventional techniques
of vaccine development are now all but obsolete due to
their poor effectiveness and high financial and labor
costs. Many scientists throughout the world are interested
in reverse vaccinology, a method for creating new vac-
cines that merges immunogenicity and bioinformatics
[43]. An immunoinformatic approach to vaccine design
is more efficient, specific, stable, and reasonably safe.
Multi-epitope vaccines have been an effective strategy
for complicated pathogens. This approach is commonly
utilized to create vaccines against different pathogens,
such as H. pylori [44], hepatitis C virus [45], Elizabeth-
kingia anopheles [46], Fasciola gigantica [47], Candida

auris [48], Tropheryma whipplei [49], Leishmania
donovani [50], Zika virus [51], Dengue virus [52], Klebsi-
ella pneumonia [53], and SARS-COV-2 [54], [55]. Several
studies concentrating on the development of H. pylori
multi-epitope vaccines have been published recently [9],
[56], [57]. According to Meza et al. [56], four pathogenic
proteins (FliD, Urease B, VacA, and CagA) have both T-
and B-cell epitopes that could be utilized for creating a
multi-epitope vaccine againstH. pylori. Additionally, Khan
et al. [58] anticipated T-cell and B-cell epitopes frommany
pathogenic proteins (CagA, GroEL, OipA, and VacA) for
making a multi-epitope vaccine against H. pylori [58].
Therefore, we employed immunoinformatic techniques
for creating a multi-epitope vaccine against H. pylori in-
fection. TwoH. pylori proteins, BabA and SabA, were used
in the current investigation to anticipate T-cell epitopes
for the final vaccine formulation.
In this study, twomajor immuno-protective antigens, BabA
and SabA, of H. pylori were selected. Because BabA and
SabA exhibit strong antigenic properties which are two
outer membrane proteins, they are used as a potential
candidate in vaccine development againstH. pylori. SabA
interacts with sialylated Lewis antigens, which are crucial
throughout the persistent infection phase, whereas BabA
interacts with host Lewis antigens during the early infec-
tion phase [59]. Furthermore, it has been demonstrated
that the presence of BabA is correlated with heightened
inflammation of the gastric mucosa and an elevated risk
of developing clinical consequences [60].
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Intestinal metaplasia, atrophic gastritis, and gastric can-
cer have also been linked to the SabA antigen [61]. This
makes it a good option for use as an adjuvant. For the
same reason, these proteins are also a good option for
the creation of a vaccine against H. pylori.
A crucial stage in the creation of multi-epitope vaccines
is the precise detection of epitopes [62]. In this study,
we used the NetCTL 1.2 and NetMHCII 2.3 servers to
identify CTL and HTL epitopes, respectively. Epitope
screening for antigenicity, toxicity, and allergenicity was
conducted in order to choose the best epitopes. BabA
and SabA proteins were projected to have a combined
total of 60 CTL epitopes, and those that might attach to
a minimum of three MHC class I supertypes were select-
ed. According to the results of antigenicity, toxicity, and
allergenicity, two CTL epitopes VYLNYVFAY (BabA) and
NTANFQFLF (SabA) were suitable for designing a multi-
epitope vaccine. However, 90 HTL epitopes were pre-
dicted, and 17 of these were found to be able to attach
to a minimum of 3 MHC class II alleles. Based on results
of antigenicity, toxicity, and allergenicity, five HTL epitopes
including two epitopes for BabA (RSKKKGSDHAAQHGI,
GNGNGEDKRNGGTKT) and three epitopes for SabA
(GKSTSGNSGASNAPS, SGNSGASNAPSWQTS,
GKSTSGNSGASNAPS) were selected to design the multi-
epitope vaccine.
It has been demonstrated that components such adjuvant
and linker can have an impact on a multi-epitope vac-
cine’s ability to successfully elicit the appropriate immune
reaction. Relevant linkers were employed in this study to
link epitopes and fuse those epitopes with other ele-
ments. The primary benefits of employing linkers are im-
proved antigen processing, presentation, and immuno-
genicity [27]. In reality, two factors that might impact a
protein’s immunogenicity are the epitope location and
the use of an appropriate linker [28], [63]. In the current
work, linkers EAAAK, GPGPG, and AAY were employed to
bind several vaccine components together. To bind the
50S ribosomal protein L7/L12 to CTL and HTL epitopes,
linker “EAAAK” was used.
EAAAK is a stiff linker, which leads to a fixed distance
between protein domains to maintain their independent
function [64]. The use of “GPGPG” to link HTL epitopes
has the dual benefits of preventing the development of
junctional epitopes and inducing HTL responses [65]. The
“AAY” linker functions as a cleavage site for proteasomes
withinmammalian cells, which lowers junctional immuno-
genicity. As a result, CTL epitopes were linked together
utilizing this linker [63].
Vaccines having several epitopes are frequently immuno-
genic and must be combined with adjuvants. Adjuvants
are an important factor in vaccine development, as they
enhance the immunological properties of vaccine con-
structs. In this work, 50S ribosomal protein L7/L12 was
utilized as an adjuvant, which indeed improved potential
receptor interactions. The 50S ribosomal protein L7/L12
is a hybrid of the L7 and L12 components. This protein
functions as a TLR4 agonist and leads to induced strong

responses of Ag-specific CD8+ class I CTL. For this reason,
it is a good option for use as an adjuvant [66].
Next, the antigenicity, toxicity, allergenicity, and physico-
chemical characteristics of the vaccine designs were ex-
amined. The results of the antigenicity evaluation utilizing
the two web servers VaxiJen v2.0 and ANTIGENpro
showed that the antigenicity scores for the vaccine design
were 0.941287 and 1.0720, respectively. The allergeni-
city and toxicity data showed that the vaccine design was
non-allergic and non-toxic, with a molecular weight of
26.14 kDa. It is easier to purify proteins with molecular
weights under 110 kDa [67]. The protein’s theoretical pI
was 6.25, and its aliphatic index was 65.15. The GRAVY
score was given as –0.385. The hydrophilic character of
the vaccine is reflected in the negative GRAVY score, while
a stronger aliphatic index value suggests enhanced
thermal stability [68]. The calculated instability index is
17.09. It was determined that proteins having an instabil-
ity score <40 were stable [69]. Furthermore, the solubility
analysis performed by the SOLpro server produced a
solubility score 0.9683 points higher than the server’s
probability of ≥0.5. Also, using the Protein-sol server, the
scaled solubility value (QuerySol), which was anticipated
to be 0.609, was determined. Scaled solubility values
over 0.45 are expected from the experimental solubility
to be greater than the average solubility of E. coli protein,
as the population average in the experimental dataset
(PopAvrSol) was 0.45. In mammalian reticulocytes cul-
tured in vitro, in yeast, and in E. coli grown in vivo, the
vaccine’s half-life was 30 hours, >20 hours, and >10
hours, respectively. Alpha-helix (56.15%), extended strand
(20%), and random coil (23.85) were among the expected
structural elements, according to the study of the second-
ary structure performed using the Prabi server. The ProSA
Z-score and the Ramachandran plot were used in the
current work to assess the initial and improved models’
quality. Previous research revealed that more than 90%
of the residues should be found in the plots’ most favored
locations [70]. This investigation’s outcomes showed
more than 90% of the residues fell inside the targeted
area, thus demonstrating the high quality of the suggested
model. In the initial model, 90.4%, 9.6%, 0.0%, and 0.0%
of the residues existed in the preferred, additional permit-
ted, generously allowed, and prohibited areas, respective-
ly; in the improved model, these percentages changed to
91.8%, 8.2%, 0.0%, and 0.0%. This was demonstrated
by a Ramachandran plot. Furthermore, the refined mod-
el’s Z-score was –4.96. To be effective, a vaccine design
depends on understanding the target protein’s tertiary
and secondary structures. The planned vaccine’s 3D
structure improved significantly following all refinement
stages.
The values –11.78, –13.15, and –42.91 for the binding
of the vaccine construct to each of the three TLR4, MHCI,
and MHCII receptors, respectively, was determined by
docking analysis of the molecular contact of the vaccine
construct with TLR4, MHCI, andMHCII. This result indicat-
ed that the recommended vaccine interacted more
strongly with MHCII than it did with MHCI and TLR4. The
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outcomes of themolecular simulation demonstrated that
the docked protein structure eventually attained relative
stability. RMSD was employed to identify large changes
in protein structure in the current study; the MD simula-
tion trajectory’s RMSD analysis indicated that the docked
complex equilibrated and did not deviate from the original
structure in a relatively stable way with time. For further
confirmation, these results can also be deduced from the
radius of gyration, as a non-significant standard deviation
occurred in theMD trajectories for the final nanoseconds.
Also, the RMSF plot showed that the relative stability and
small deviations can be a reason for the interactions
between the two parts of the complex.
Protein expression is influenced by a number of compo-
nents, such as GC and CAI content. Any gene’s codon
expression level may be measured by the CAI, and a CAI
value above 0.8 denotes a stronger expression level. In
reality, to achieve high-level protein production, codon
optimization often increases transcriptional and transla-
tional efficiency. Additionally, the GC content should be
anywhere from 30% to 70%t to increase the degree of
protein expression [38], [39]. The GC and CAI contents
in this work were 1.00 and 51.28%, respectively. Lastly,
in silico cloning of the optimized sequence was performed
into the pET28a (+) vector utilizing SnapGene. This vector
is an excellent means of producing vast quantities of
protein [71]. Furthermore, the inclusion of the 6 His tag
enabled protein separation for later analysis [72].

Limitations

This study relied entirely on computational and in silico
methods for vaccine design, which presents several lim-
itations. Firstly, while immunoinformatics approaches can
predict epitope behavior, they cannot fully replicate the
complex biological interactions that occur in living sys-
tems, potentiallymissing important immunological factors.
Secondly, the computational predictions of antigenicity,
allergenicity, and physicochemical properties, while
valuable, require extensive experimental validation, since
in silico models cannot perfectly simulate real-world im-
mune responses.

Conclusions
A prophylactic vaccine against H. pylori infection may
prove to be practical and affordable. In the current work,
wemade amulti-epitope vaccine againstH. pylori utilizing
immunoinformatics. The proposed vaccine might be a
good vaccine candidate against H. pylori, according to in
silico research. Additional in vivo, preclinical and clinical
studies are needed to evaluate the safety along with the
effectiveness of the suggested vaccines.
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