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In-hospital mortality from healthcare-associated infection
by multidrug-resistant Pseudomonas aeruginosa: a
competing risks analysis of a 4-year propensity-matched

cohort study in southern China

Sterblichkeit im Krankenhaus aufgrund von Infektionen durch
Mmultiresistente Pseudomonas aeruginosa: eine Analyse der

konkurrierenden Risiken einer 4-Jahres

Propensity-Matching-Kohortenstudie in Sudchina

Abstract

Background: Healthcare-associated infections (HAIs) caused by mul-
tidrug-resistant Pseudomonas aeruginosa (MDRPa) pose enormous
challenges in healthcare. We examined the incidence and relative
mortality rates of patients with MDRPa HAI compared to non-MDRPa
HAI in southern China.

Methods: A hospital-wide longitudinal cohort study was conducted using
prospectively collected surveillance data from 2018 to 2021. Poisson
regression was applied to estimate incidence rate ratios (IRRs).
Propensity-score matching and competing risks regression analysis
(Fine-Gray model) were employed to estimate subdistribution hazard
ratios (sHRs) for in-hospital mortality comparing MDRPa to non-MDRPa
infections.

Results: Among 562 patients studied (mean age 58 years, 74% male,
in-hospital mortality 13.7%), 278 (49%) had an MDRPa HAl and
284 (51%) a non-MDRPa HAI. The incidence rate of MDRPa HAls in-
creased over time (mean monthly IRR: 1.016, 95% CI: 1.007-1.024).
No significant difference in 14-day in-hospital mortality between MDRPa
and non-MDRPa HAls were detected in the propensity-matched doubly-
robust analysis (adjusted sHR: 1.07, 95% CI: 0.52-2.19). However,
MDRPa HAl was associated with a lower probability of 14-day discharge
alive (adjusted sHR: 0.44, 95% CI: 0.31-0.63), resulting in longer hos-
pital stays.

Conclusions: The study provided real-world evidence of the clinical
burden of MDRPa HAls in China, highlighting their rising incidence and
direct effect on prolonging hospitalisation. The findings underscore the
need for antimicrobial stewardship interventions to ensure timely de-
escalation and optimised antibiotic therapy.

Keywords: healthcare-associated infections, multidrug-resistant
Pseudomonas aeruginosa, in-hospital mortality, discharge alive,
competing risk analysis, antimicrobial stewardship, incidence density,
China, Dongguan

Zusammenfassung

Hintergrund: Gesundheitseinrichtungen stehen vor groflen Herausfor-
derungen durch gesundheitssystem-assoziierte Infektionen (auf Englisch:
Healthcare-associated infections (HAls)), die durch multiresistente
Pseudomonas aeruginosa (MDRPa) verursacht werden. Diese Studie
untersuchte die Inzidenz und die relative Sterblichkeit von Patient:innen
mit MDRPa-HAI im Vergleich zu nicht-MDRPa-HAI in Stdchina.
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Methoden: Es wurde eine krankenhausweite, longitudinale Kohorten-
studie mit prospektiv erhobenen Uberwachungsdaten aus den Jahren
2018 bis 2021 durchgefihrt. Mittels Poisson-Regressionen wurden
Inzidenzratenverhaltnisse (IRRs) geschatzt. Um die Subverteilungs-Ha-
zard-Ratios (sHRs) der intrahospitalen Sterblichkeit im Vergleich zwi-
schen MDRPa- und nicht-MDRPa-Infektionen zu ermitteln, kamen das
Propensity-Score-Matching sowie eine Competing-Risks-Regression
(Fine-Gray-Modell) zum Einsatz.

Ergebnisse: Unter den 562 untersuchten Patient:innen (Durchschnitts-
alter 58 Jahre, 74% mannlich, intrahospitale Sterblichkeit 13,7%) hatten
278 (49%) eine MDRPa-HAI und 284 (51%) eine nicht-MDRPa-HAI. Die
Inzidenzrate der MDRPa-HAls stieg im Zeitverlauf an (durchschnittliches
monatliches IRR: 1,016; 95%-Kl: 1,007-1,024). In der doppelt robusten
Analyse nach Propensity-Matching wurde kein signifikanter Unterschied
in der 14-Tage-Sterblichkeit im Krankenhaus zwischen MDRPa- und
nicht-MDRPa-HAIs festgestellt (adjustiertes sHR: 1,07; 95%-Kl:
0,52-2,19). Allerdings war eine MDRPa-HAI mit einer geringeren
Wahrscheinlichkeit verbunden, innerhalb von 14 Tagen lebend entlassen
zu werden (adjustiertes sHR: 0,44; 95%-KI: 0,31-0,63), was zu langeren
Krankenhausaufenthalten fihrte.

Schlussfolgerungen: Die Studie liefert praxisnahe Evidenz flr die klini-
sche Belastung durch MDRPa-HAls in China und hebt deren zunehmende
Inzidenz sowie ihren direkten Einfluss auf verlangerte Krankenhausauf-
enthalte hervor. Die Ergebnisse unterstreichen die Notwendigkeit von
Manahmen zu einer bedachtsamen Antibiotikaverwendung, um eine
rechtzeitige Deeskalation und optimierte antimikrobielle Therapie si-
cherzustellen.
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Schliisselworter: Gesundheitssystem-assoziierte Infektionen,
Multiresistente Pseudomonas aeruginosa, Intrahospitale Sterblichkeit,
Lebendentlassung, Competing-Risk-Analyse, Antimicrobial Stewardship,
Inzidenzdichte, China, Dongguan

As outlined in the susceptible-infection counterfactual
framework by Karakonstantis et al. [ 7], a methodologically

Introduction

Treating healthcare-associated infections (HAIs) caused
by multidrug-resistant Pseudomonas (P.) aeruginosa
(MDRPa) is a considerable challenge for clinicians and
the healthcare system [1]. In 2024, the World Health Or-
ganisation (WHO) classified MDRPa as a “high priority”
pathogen on its Bacterial Priority Pathogens List, given
its high transmissibility, elevated case fatality rates, and
significant economic burden on healthcare facilities [1],
[2], [3], [4]. Recent global data indicate an increasing
trend in the incidence of MDRPa HAls [5]. This rise has
been largely attributed to the disruption of routine infec-
tion-control practices during the COVID-19 pandemic and
the challenges in effectively implementing antimicrobial
stewardship programs [1], [5], [6]. Furthermore, the lack
of new antibiotics active against multidrug-resistant Gram-
negative bacteria has resulted in limited treatment op-
tions, often leaving last-resort antibiotics as the only vi-
able therapies [7]. Additionally, the growing elderly popu-
lation requiring intensive care unit (ICU) admission,
combined with an increase in comorbidities such as
cancer, organ transplants, and immunocompromised
conditions, has heightened the risk of acquiring MDRPa
during hospitalisation [1].

rigorous assessment of the impact of MDRPa HAls on in-
hospital mortality is essential. Competing risks survival
analysis is becoming increasingly common in antimicro-
bial resistance research because traditional survival
analysis may overestimate infection-related risks by ignor-
ing competing outcomes, such as discharge alive [8], [9],
[10]. However, despite its advantages for hazard estima-
tion, only a few studies to date have applied this method
to in-hospital mortality rates for MDRPa HAls. For ex-
ample, von Cube et al. [11] used multivariable competing
risks analysis to assess overall ICU mortality by comparing
ventilator-associated pneumonia (VAP) caused by
P. aeruginosa with VAP not caused by P. aeruginosa.
Similarly, Kritsotakis et al. [12] used multivariable com-
peting risks analysis to examine in-hospital mortality at
14 and 30 days following the onset of ESKAPEE-associ-
ated bacteraemia - including P. aeruginosa - comparing
MDR to non-MDR infections. However, to our knowledge,
no studies have so far simultaneously applied both
propensity score matching and multivariable competing
risks analysis for MDRPa HAls. Our study therefore aims
to fill this methodological gap and to offer a clearer un-
derstanding of the mortality implications specific to
MDRPa HAls in order to inform clinical decision-making
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related to infection control using robust analytical meth-
ods.

Against this background, the objectives of the present
study were to

1. quantify the trend of incidence of MDRPa and non-
MDRPa HAls over time and

2. assess the excess in-hospital mortality from MDRPa
HAls relative to non-MDRPa HAls in hospitalised pa-
tients in southern China.

Methods
Study design

A longitudinal cohort study was conducted at a 2,430-
bed tertiary care, university-affiliated hospital in Dongguan
City, located in the Guangdong-Hong Kong-Macao Greater
Bay Area, in China. The cohort comprised hospitalised
patients, regardless of age or department of admission,
who had a confirmed HAI caused by P. aeruginosa as a
monomicrobial infection, and were admitted on or after
January 1, 2018, and discharged before December 31,
2021. Patients were included once in the study, and only
their first episode of infection was considered [13].

Outcome endpoints

The outcome endpoints of interest were the incidence
rate of HAI due to P. aeruginosa and the all-cause in-
hospital mortality rate, stratified by MDR status. Inpatient
death within 14 days of the infection onset was con-
sidered the primary event of interest, as this is likely to
be directly related to the infection. Additionally, 30-day
and total in-hospital mortality rates were examined to
evaluate the potential effect on delayed fatalities.

Data collection

Prospectively collected data were extracted from the
Dongguan Nosocomial Infection Surveillance System [14],
[15]. Patient-related data (age, sex, diagnosis and depart-
ment of admission, comorbidities), infection-related data
(date of onset and site of infection), receipt of empiric
therapy, and patient outcome (in-hospital death or dis-
charge alive) were retrieved.

Definitions

A HAI was defined as an infection that was not present
at the time of hospital admission, and was either acquired
at least 48 hours after admission, or occurred within
30 days after surgery or other clinical intervention at an-
other healthcare facility [16]. HAls were confirmed clini-
cally and microbiologically by the hospital’s clinicians
using the diagnostic criteria for nosocomial infection
published by the Ministry of Health of the People’s Repub-
lic of China [16], [17]. These definitions categorise HAI

according to the organ/tissue system affected. The major
infection sites considered for analysis were bloodstream
infection, lower respiratory tract infection (including
pneumonia), VAP, urinary tract infection and catheter-
associated infection. All other types of infection were
categorised as “other”.

MDRPa status was declared for isolates non-susceptible
to at least one antimicrobial agent in three or more anti-
microbial groups, whereas non-MDRPa was declared
when the isolates were non-susceptible to no more than
two antimicrobial categories [13]. Antimicrobial suscep-
tibility was assessed using the US National Clinical and
Laboratory Standards Institute guidelines [15].

Statistical analysis

Temporal changes in MDRPa and non-MDRPa HAI inci-
dence were examined with a Poisson regression model
to describe the variation of monthly incidence rates
(number of infections per 1,000 hospitalisation days),
for each major site of infection, with the time (in months)
elapsed since the start of the study. The monthly series
of hospitalisation days was used as an offset variable
(log transformed) to account for the size of the hospital
population and the length of hospital stay. This approach
allowed the estimation of the mean monthly incidence
rate ratio (IRR) and its 95% confidence interval (Cl). IRR>1
indicates an upward trend and IRR<1 a downward trend
of infection incidence over time. The mean monthly per-
centage change in infection incidence was calculated as
(IRR-1)x100%.

A propensity score-matched sample was constructed to
minimise bias when comparing in-hospital mortality rates
between patients with MDRPa HAI and those with non-
MDRPa HAI. Propensity scores were estimated by logistic
regression, accounting for age, sex, department at hos-
pital admission, site of infection, diabetes, immunocom-
promised status, and COVID-19 period. Matching 1:1 was
achieved by applying a nearest-neighbour method with
a calliper width of 0.2 times the standard deviation of the
logit of the propensity score using the Matchlt R package
[18], [19]. Standardised mean differences less than 10%
were considered to indicate an acceptable balance of
covariates between groups [18], [19].

Cumulative probabilities of a patient dying in the hospital
before any given day were calculated using the Aalen-Jo-
hansen method [20]. In this analysis, being discharged
alive was treated as a competing event to in-hospital
death [21]. The results were illustrated by cumulative in-
cidence function (CIF) plots produced with the cuminc
function of the cmprsk package in R. When comparing
mortality and discharge-alive rates between MDRPa and
non-MDRPa HAls, the effect sizes were expressed as
subdistribution hazard ratios (sHRs) with 95% confidence
intervals from the Fine-Gray model, through the FGR
function of the risk Regression R package [22]. The sHRs
described the relative effect of MDR status and other
covariates on the subdistribution hazard functions for
(thereby, the probabilities of) in-hospital death and dis-

GMS | (&G

GMS Hygiene and Infection Control 2025, Vol. 20, ISSN 2196-5226

3/10



Zhou et al.: In-hospital mortality from healthcare-associated infection ...

charge-alive [22]. A low sHR for discharge-alive (<1)
indicates a reduced daily discharge rate, leading to pro-
longed hospitalisation.

The results from bivariable and multivariable Fine-Gray
models were shown for both the original unmatched co-
hort and the propensity-matched sample. The multivari-
able regression analysis of the matched data, incorporat-
ing the variables used in the propensity-score model, can
be regarded as a doubly robust adjustment [18]. Nine
baseline covariates were included: age over 65 years,
sex, admission diagnosis, department of admission, site
of infection, receipt of empiric therapy, presence of dia-
betes, immunocompromised status, and year of infection
occurrence. Multicollinearity of the covariates was ruled
out by examining variance inflation factors (see Supple-
mentary Table S1 in Attachment 1).

For all survival analyses, time zero was defined as the
time of infection onset. For the 14-day, 30-day and overall
hospitalisation outcomes, event-free time was adminis-
tratively censored at 14, 30 and 120 days, respectively,
for patients who remained hospitalised for longer periods.
There were no missing data for any study variable.
Statistical significance was considered when two-sided
P < 0.05. R code for the main analyses is included in
Supplementary Material for R code (Attachment 1).

Ethics

The study was approved by the Ethics Committee of
Dongguan Songshan Lake Tungwah Hospital (reference
SDHKY-2025-006-01) and is reported following the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines (see Supplementary
Table S2 in Attachment 1) [23].

Results

Cohort characteristics

The flowchart of the study is shown in Supplementary
Figure S1 (Attachment 1). In all, 278 patients were dia-
gnosed with an MDRPa HAI and 284 with a non-MDRPa
HAI between 2018 and 2021. Baseline covariates were
considerably imbalanced between the groups (Table 1).
The patients with an MDRPa HAI were older, more likely
to have been admitted to the ICU with a diagnosis of a
respiratory disease, and less likely to have cancer or
diabetes than patients with non-MDRPa HAI. Bloodstream
and urinary tract infections were more frequent in the
MDRPa HAI group. Moreover, the MDRPa HAIs were more
prevalent than non-MDRPa HAls during the post-COVID
period.

The length of hospitalisation for patients with an MDRPa
HAI was significantly longer than for patients with a non-
MDRPa HAI (median 63 vs. 38.5 days, respectively;
p<0.001). Length of stay distributions by MDR status and
year are shown in Supplementary Figure S2 (Attachment
1). The overall in-hospital mortality was 13.7% (77/562)

and was higher in the MDRPa HAI group than the non-
MDRPa HAI group (17.3% vs. 10.2%, P=0.015).

Infection incidence rates

The hospital-wide incidence rate of MDRPa HAls increased
significantly over time, from 0.076 cases per 1,000 hos-
pital-days in 2018 to 0.115 cases per 1,000 hospital-
days in 2021, with a mean percentage increase of 1.6%
per month (IRR=1.016; 95% Cl: 1.007-1.024). The in-
creasing trend was evident for lower respiratory-tract in-
fections and ventilator-associated pneumonias caused
by MDRPa (Figure 1). In parallel, non-MDRPa HAI inci-
dence increased over time, mainly due to increasing lower
respiratory-tract infections (see Supplementary Figure S3
in Attachment 1). In contrast, the incidence rates of
bloodstream infections caused by MDRPa and non-
MDRPa remained constant over time.

Effects on patient outcome

Univariate cumulative function plots (Figure 2) that con-
sider competing risks and the censoring of event times
revealed that patients with MDRPa HAI had consistently
lower daily probabilities of being discharged alive from
the hospital. This implies longer lengths of stay than pa-
tients with non-MDRPa HAI, both in the unmatched com-
parison and in that adjusted for propensity scores. How-
ever, less pronounced differences were seen for in-hos-
pital mortality, especially when comparing the propensity-
matched groups.

When the Fine-Gray model was applied (Table 2), a slightly
higher, albeit statistically non-significant, hazard of 14-
day inpatient death (sHR=1.20, 95% Cl 0.62-2.35) was
found for MDRPa HAI patients in the unmatched analysis,
but this was ruled out in the propensity-matched analysis
(sHR=1.07, 95% Cl 0.52-2.19). Similar results were ob-
tained when the analysis was extended to 30 days from
infection onset. However, when the analysis was extended
to the entire hospitalisation period, an elevated hazard
of in-hospital death was found (sHR=1.37, 95% CI
0.78-2.39 in doubly robust analysis), suggesting that
factors other than the infection may become important
for the long-term survival of the patients. All the analyses
presented in Table 2 consistently showed significantly
lower subdistribution hazard rates of hospital discharge-
alive in the MDRPa HAI group, indicating that these pa-
tients experienced longer lengths of hospital stay than
non-MDRPa HAI patients. Detailed results from the mul-
tivariable Fine-Gray models, including the effects of
baseline covariates, are provided in Supplementary Tables
S3 and S4 (Attachment 1).

Discussion

An increase in the prevalence of MDRPa HAls over the
past decade has been repeatedly documented in
healthcare settings in China [15], [24], [25]. The present

GMS | (&G

GMS Hygiene and Infection Control 2025, Vol. 20, ISSN 2196-5226

4/10



Zhou et al.: In-hospital mortality from healthcare-associated infection ...

Table 1: Baseline characteristics of the original and propensity-matched groups of patients infected with P. aeruginosa by

multidrug resistance status

Baseline covariates Original (unmatched) groups Propensity-matched groups
non-MDRPa | MDRPa HAI | SMD | non-MDRPa | MDRPa HAI | SMD
HAI (n=278) (%) HAI (n=233) (%)
(n=284) (n=233)
Age (years), mean (SD) 56.5 (18.5) 59.8 (18.7) | 18% | 57.8 (17.3) 57.8 (18.4) | <0.1%
Age 265 years, n (%) 95 (33.5%) |115(41.4%) | 16% | 80 (34.3%) 84 (36.1%) 4%
Male sex, n (%) 210 (73.9%) | 207 (74.5%)| 1% | 177 (76.0%) | 178 (76.4%) 1%
Admission department, n (%) 34% 10%

Intensive Care Unit 64 (22.5%) 6 (30.9%) 61 (26.2%) 68 (29.2%)

Internal Medicine 68 (23.9%) | 39 (14.0%) 47 (20.2%) 39 (16.7%)

Surgery 113 (39.8%) | 97 (34.9%) 90 (38.6%) 92 (39.5%)

Other 39 (13.7%) | 56 (20.1%) 35 (15.0%) 34 (14.6%)
Admission diagnosis, n (%) 34% 27%

Cardiovascular disease 20 (7.0%) 1(4.0%) 7 (7.3%) 9 (3.9%)

Neurological disorder 79 (27.8%) 4 (33.8%) 69 (29.6%) 80 (34.3%)

Respiratory disease 37 (13.0%) 4 (19.4%) 33 (14 2%) 42 (18.0%)

Injury or orthopaedic condition 39 (13.7%) 38 (13.7%) 2 (13.7%) 36 (15.5%)

Cancer or related disorder 38 (13.4%) 7 (6.1%) 27 (11 .6%) 15 (6.4%)

Other diagnosis 71(25.0%) | 64 (23.0%) 55 (23.6%) 51 (21.9%)
Infection site, n (%) 33% 7%

Bloodstream 26 (9.2%) 29 (10.4%) 26 (11.2%) 25 (10.7%)

Lower Respiratory Tract 148 (52.1%) | 150 (54.0%) 130 (55 8%) | 129 (55.4%)

Urinary Tract 27 (9.5%) 49 (17.6%) 6 (11.2%) 1(13.3%)

Other Site 83 (29.2%) | 50 (18.0%) (21 .9%) (20.6%)
Receipt of empiric therapy, n (%) 221 (77.8%) | 226 (81.3%)| 9% | 181 (77.7%) | 185 (79.4%) 4%
Diabetes, n (%) 2 (4.2%) 4(1.4%) |[17% 6 (2.6%) 4 (1.7%) 6%
Immunocompromised, n (%) 8 (6.3%) 20 (7.2%) 3% 15 (6.4%) 5(6.4%) | <0.1%
Period, n (%) 16% <0.1%

2018-2019 (Pre-COVID) 109 (38.4%) | 97 (34.9%) 89 (38.2%) | 89 (38.2%)

2020 78 (27.5%) | 97 (34.9%) 69 (29.6%) | 69 (29.6%)

2021 97 (34.2%) | 84 (30.2%) 75 (32.2%) | 75 (32.2%)

COVID, coronavirus disease; HAI, healthcare-associated infection; MDRPa, multidrug-resistant Pseudomonas
aeruginosa; SD, standard deviation; SMD, Standardised mean difference.

Note: After propensity score matching, the two groups were comparable for all baseline covariates (SMD<10%),

except for the covariate admission diagnosis (SMD=27%)

study addresses a critical research gap by providing real-
world evidence of the clinical impact of multidrug resis-
tance in HAls caused by P. aeruginosa in a healthcare
setting that reflects the typical standard of care in the
country. The findings also reflect the current state of an-
timicrobial stewardship programmes in managing MDRPa
HAls - an area in which limited information is currently
available in China.

We observed a significant increase in the frequency of
MDRPa HAls between 2018 and 2021, which is consis-
tent with the increasing burden of hospital-onset MDRPa
reported in healthcare settings in the United States during
the same period [26]. However, the reasons for this rising
incidence in our setting may differ from those in other
countries, where increases have been partly attributed
to disruptions to healthcare practices and lapses in infec-
tion prevention measures associated with COVID-19 [6].
The rise in incidence in the current study is potentially

explained by patient characteristics - specifically, an
older patient population and a higher prevalence of car-
diovascular and cerebrovascular diseases. Our data
indicates that patients aged over 65 had significantly
lower chances of being discharged alive in the doubly
robust analysis (see Supplementary Tables S3 in Attach-
ment 1). This group represents a vulnerable population
that is more susceptible to MDRPa HAls due to prolonged
hospitalisation and higher exposure risks. Furthermore,
over a third of the patients in our study had cardiovascular
and cerebrovascular diseases (Table 1), conditions that
are associated with increased 14-day (sHR: 1.65) and
30-day (sHR: 1.18) inpatient mortality, although these
increases were not statistically significant. This finding is
similar to Denis et al. [27], who reported that ICU patients
with cardiovascular diseases and MDRPa infections had
an elevated odds ratio (OR: 1.29, 95% CI: 0.84-1.97) for
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ventilator-associated pneumonia.

Figure 1: Incidence rate trends of healthcare-associated infection by multidrug-resistant P. aeruginosa, 2018-2021

30-day in-hospital mortality compared to infections
caused by susceptible P. aeruginosa.

In the doubly robust analysis, we observed that the
probability of in-hospital mortality at 14 days was barely
elevated (sHR: 1.07) (Table 2), suggesting that MDRPa

HAls may not lead immediately to patient death. Never-
theless, Park et al. [28] reported that adequate empirical
antimicrobial therapy within three days significantly re-
duced 14-day mortality (adjusted OR: 0.23) in patients
with P. aeruginosa and Acinetobacter baumannii bacter-
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Figure 2: Univariate cumulative function curves showing the probability of each event (in-hospital mortality and discharge alive)
over time for MDRPa HAI and non-MDRPa HAI, in both original (unmatched) and propensity-matched groups.

Table 2: Estimated effects of the multidrug resistance status in P. aeruginosa infection on patient outcomes

In-hospital mortality Discharge alive
Group sizes 14-day 30-day Overall 14-day 30-day Overall
Type of analysis MDRPa Non- sHR sHR sHR sHR sHR sHR
MDRPa | (95% Cl) (95% CI) (95% Cl) (95% Cl) (95% CI) (95% CI)
Unmatched groups, 278 284 1.35 1.30 1.56 0.53 0.63 0.68
bivariable (0.71-2.58) | (0.76-2.24) | (0.97-2.52) | (0.39-0.72) | (0.50-0.79) | (0.57-0.82)
Unmatched groups, 278 284 1.20 1.14 1.48 0.48 0.61 0.68
multivariable (0.62-2.35) | (0.65-2.01) | (0.89-2.49) | (0.34-0.68) | (0.47-0.79) | (0.56-0.83)
Matched groups, 233 233 1.07 0.96 1.33 0.49 0.61 0.70
bivariable (0.53-2.16) | (0.53-1.74) | (0.79-2.23) | (0.35-0.68) | (0.47-0.79) | (0.57-0.85)
Matched groups, doubly 233 233 1.07 0.95 1.37 0.44 0.56 0.66
robust multivariable (0.52-2.19) | (0.51-1.77) | (0.78-2.39) | (0.31-0.63) | (0.43-0.74) | (0.54-0.82)

Cl, confidence interval; MDRPa, multidrug-resistant Pseudomonas aeruginosa; sHR, sub-distribution hazard ratio.

Note: The sHR estimates were derived from the Fine—Gray competing risks model, adjusting for age over 65 years, sex, admission
diagnosis, department of admission, site of infection, receipt of empiric therapy, presence of diabetes, imnmunocompromised status,
and year of infection occurrence.
Note: Detailed results from the multivariable Fine-Gray models, including the effects of baseline covariates, are provided in
Supplementary Tables S3 and S4 in Attachment 1.

aemia in two Korean hospitals, particularly when non- chemotherapy in Yuan et al.’s study, whereas our patient
colistin antibiotics were used. Moreover, our study found population had a relatively low proportion of immunocom-
no significant increase in the hazard for 30-day in-hospital  promised individuals.

mortality, in contrast to Yuan et al. [29], who reported Analysing the entire hospitalisation period, we found a
significantly higher 28-day mortality rates in haematology non-significantly elevated hazard of overall in-hospital
departments among patients with carbapenem-resistant mortality (adjusted sHR: 1.37) but a significantly lower
P. aeruginosa BSls than among those with carbapenem-  probability of discharge alive (adjusted sHR: 0.66)
susceptible infections. This difference likely reflects the (Table 2). Similar findings were observed among patients
immunocompromised status of patients undergoing with lower respiratory tract infections caused by MDRPa
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(see Supplementary Tables S3 in Attachment 1). These
results are consistent with von Cube et al. [11], who re-
ported no significant increase in in-hospital mortality
hazard (adjusted HR: 1.05) but a significantly lower like-
lihood of discharge alive (adjusted HR: 0.67) among ICU
patients with VAP caused by P. aeruginosa than among
those with VAP without P. aeruginosa. Both our study and
von Cube et al. indicate that prolonged hospitalisation
potentially elevates the risk of pathogen transmission
among patients. This is further reflected in the rising trend
in VAP caused by MDRPa that we observed (Figure 1),
which underscores the urgent need for MDRPa screening
prior to initiating long-term mechanical ventilation and
for the reinforcement of stringent infection control
measures [30].

The Infectious Diseases Society of America recommends
that empirical therapy be guided by clinical judgement
and local epidemiological data [31]. Although our analysis
- unlike Ohnuma et al. [32] - did not show a significant
reduction in in-hospital mortality associated with empirical
therapy, we did observe a statistically significant increase
in the likelihood of overall discharge alive (sHR: 1.32)
(see Supplementary Tables S4 in Attachment 1), similar
to findings by Deconinck et al. [33]. These results suggest
that appropriate early empirical therapy, followed by
prompt de-escalation based on susceptibility test results,
may help stabilise patients, prevent clinical deterioration
and enhance discharge prospects.

The main strength of the present study is the use of a
novel competing risks survival analysis model with
propensity-matched and multivariable adjustment, which
offers a doubly robust approach to assessing in-hospital
mortality [18]. Nonetheless, our study also has limitations.
First, certain important baseline covariates, such as Acute
Physiology and Chronic Health Evaluation Il scores, were
unavailable in our dataset, limiting the precision of
severity assessments [34]. Second, detailed data on the
timing and extent of invasive medical device use before
MDRPa HAI diagnosis were lacking, despite evidence
suggesting a significant association with increased mor-
tality, particularly interventions like tracheal intubation
[35].

In conclusion, this study provides real-world evidence of
the clinical impact of MDRPa HAls in China, highlighting
the rising incidence. The findings emphasise the critical
need for optimised antimicrobial stewardship programmes
to ensure rational antibiotic use. Furthermore, our com-
prehensive assessment of the MDRPa HAI burden in the
context of hospital antimicrobial stewardship offers es-
sential guidance to clinicians to support their evidence-
based decision-making in the management of MDRPa
HAls.
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