Minimum requirements for scientific training in medical studies
Julia Eckel 1Elena Sperk 2
Wilko Thiele 3
Katrin Schüttpelz-Brauns 1
1 Medical Faculty Mannheim Heidelberg University, University Medical Center Mannheim (UMM), Division for Study and Teaching Development, Medical Education Research Department, Mannheim, Germany
2 Medical Faculty Mannheim Heidelberg University, University Medical Center Mannheim (UMM), Mannheim Cancer Center Clinical Trials Unit, Mannheim, Germany
3 Medical Faculty Mannheim Heidelberg University, European Center for Angioscience (ECAS), Department of Microvascular Biology and Pathobiology, Mannheim, Germany
Abstract
We propose a new approach to deriving minimum standards for scientific training in medical studies. This approach allows specific learning objectives to be clearly defined and presented, in an easily comprehensible manner. We contend that a fundamental prerequisite for university studies is the instruction in the systematic scientific method that can be described through the scientific cycle. This instruction provides the foundation for the acquisition of scientific knowledge and evidence-based practice in medicine.
Keywords
medical education, scientific competence, learning objectives, standards
Introduction
A sound scientific understanding is a prerequisite for evidence-based action in medicine [23], and the application of scientific findings in everyday clinical practice has a positive influence on quality in patient care [23], [24]. Physicians must therefore read scientific publications and critically evaluate the extent to which the findings presented in them, or derivable from them, have implications for their clinical practice. In reality, however, practicing physicians frequently report that they lack the skills to evaluate clinical studies or other scientific publications with regard to their quality and validity [28].
This proficiency gap is already apparent during their studies, where medical students do not feel adequately prepared to conduct research independently [7], [27]. Moreover, the content taught during their studies should also prepare medical students for a doctorate, which is actually intended to demonstrate their ability to conduct scientific research. Without fostering a fundamental understanding of science during training, there is a risk of a shortage of future researchers in medical science [9], [20]. This problem has already been recognised, and for years, there have been calls from various directions to improve scientific education in medical studies, not only due to the rapid growth of knowledge and technological advancements [1], [3], [4], [5], [6], [23], [21], [25], [33]. The Association of the Scientific Medical Societies in Germany (2008) [25], the German Research Foundation (2010) [6], the German Council of Science and Humanities (2014) [33], and the Association of Medical Faculties (2016) [22] have long acknowledged the necessity for the enhanced acquisition of fundamental scientific competencies throughout the course of medical studies. In addition, universities, in their role as research institutions and educational institutions for scientific skills, fear a “deprofessionalization” of medical training and the loss of the scientific basis (“de-academisation”) [25]. This is evidenced by the divergence in the content and focus of the scientific curricula of different medical faculties in Germany. While two-thirds of the innovative and reform-based degree programmes integrate a compulsory module on scientific work, this is only the case for around a quarter of the traditional degree programmes [2].
The German National Competency-Based Learning Objective Catalog (NKLM) [14], including the chapter on medical-scientific skills (VIII.1.), is currently being revised to reduce learning objectives and redundancies. Since the medical curricula are currently overloaded with subject-specific knowledge and learning objectives, there is critical opposition to a curriculum reform. Accordingly, discussions are ongoing at the faculties regarding how scientific thinking and research can be integrated into medical programs, raising the question of the minimum requirements for scientific rigor in medical education. At the same time, the faculties face the challenge and responsibility of sufficiently realising the scientific education within the medical curriculum as part of a university education. With this commentary, we aim to stimulate further discussion on the minimum standards for scientific education in medical studies.
Scientific-systematic method
Scientific competence is defined as “the ability to identify problems, generate hypotheses, search for and evaluate evidence, draw conclusions, and communicate and critically evaluate scientific thinking and its results” [33] (for further information, please refer to [8] and [19]).
Scientific competence is therefore the ability to apply the scientific method that can be described with the help of the scientific cycle (see figure 1 [Fig. 1]).
Figure 1: Scientific cycle: The scientific-systematic method
Based on an observation that is placed in the context of existing knowledge, a question is formulated from which one or more hypotheses are derived in the hypothesis-testing procedure. In order to test the hypotheses, data is collected in a systematic manner, either diagnostically, analytically or experimentally, and then evaluated and interpreted. This process enables the research question to be answered and the results to be integrated into existing knowledge. The results and conclusions may be communicated in a variety of formats, including presentations, scientific publications (papers), research works, or even guidelines, doctors' reports, or patient consultations. The knowledge gained in this way frequently represents an observation in itself or gives rise to new observations that result in the inception of a new scientific cycle. In the event that the available data is insufficient, it may be necessary to undertake an exploratory, hypothesis-generating procedure prior to the formulation of hypotheses (grey arrow). This involves the systematic collection of data based on the research question without the initial formulation of hypotheses, which are then subjected to analysis and interpretation. The data thus collected represents an observation in itself, and serves to supplement the original observation, thereby enabling the research question to be specified with greater precision. This, in turn, allows the formulation of hypotheses and the commencement of a hypothesis-testing procedure in the next phase of the cycle.
The scientific method has its origins in the work of Hippocrates of Kos (460-370 BC) and encompasses abductive, retroductive, deductive and inductive reasoning and argumentation [19]. Although the specific starting points and the emphasis on individual steps of the scientific cycle may vary across different disciplines [8], the method is generic, meaning it is the same in all areas of medical research and across disciplines (see attachment 1 [Att. 1]).
In their everyday clinical practice, medical doctors must also adopt a scientific and systematic method, which involves developing questions, generating hypotheses, collecting data and deriving, documenting and communicating evidence-based working strategies. The critical analysis of a paper in everyday clinical practice, or in the context of research, also requires checking whether scientific standards have been adhered to in the individual steps of the scientific cycle and whether the statements in the paper are valid.
Derivation of the minimum requirement for scientific training
The minimum scientific training requirement for medical students can be clearly derived from the scientific cycle as the overarching structure. It is defined as the ability to independently conduct scientific and systematic inquiry, utilising the individual steps outlined in figure 1 [Fig. 1]. This ability serves to prepare for and implement a doctorate, enabling the independent conduct of studies aimed at generating knowledge in various research areas (with their respective discipline-specific research methods) and the development of guidelines and subsequent targeted application of evidence-based medicine according to the current state of scientific knowledge. Table 1 [Tab. 1] shows the thus derived science-oriented learning objectives for a future core curriculum of medical faculties, depending on the competencies required for the scientific-systematic method.
Table 1: Derived science-oriented learning objectives for a prospective core curriculum for medical faculties
It is essential that the learning objectives are operationalised in the curriculum at both the individual level (e.g. literature research) and within a contextual framework (as part of the scientific-systematic method). In order to assess scientific competence at the final examination stage, students should be required to complete a scientific paper independently, under the guidance of a supervisor. The necessity for independent performance in scientific work has been discussed at length and justified in terms of learning theory. It is also pertinent to cite the ongoing debate surrounding research-based teaching (see references [12], [15], [16]), Holzkamp’s (1995) subject-science method to learning (see [17]), and the fundamental concepts of research-based learning as outlined by Huber (2009) (see [18]). Furthermore, it is of great significance to establish a connection between scientific discoveries, and their impact on clinical practice. This can for example be achieved by examining the applicability of current scientific evidence to patient cases.
Conclusion
It is imperative that scientific skills be taught at medical faculties in Germany, as they form the foundation for scientific inquiry and medical care, with consideration of the current state of scientific knowledge. In this context, the facilitation of the aforementioned systematic scientific method, from which the science-oriented learning objectives formulated for the core curriculum can be derived, represents a fundamental prerequisite for a university-level education.
Authors’ ORCIDs
- Elena Sperk: [0000-0002-8771-8124]
- Wilko Thiele: [0000-0002-8978-4192]
- Katrin Schüttpelz-Brauns: [0000-0001-9004-0724]
Competing interests
The authors declare that they have no competing interests.
References
[1] Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF). Stellungnahme zur Wissenschaftlichkeit des Medizinstudiums. Düsseldorf: AWMF; 2014. Zugänglich unter/available from: https://www.awmf.org/fileadmin/user_upload/dateien/stellungnahmen/2014/1.pdf[2] Bauer J, Schendzielorz J, Oess S, Mantke R. Ausmaß und Integration von Wissenschaftsmodulen in das Medizinstudium an den staatlichen Fakultäten und den privaten staatlich anerkannten Fakultäten in Deutschland: eine Querschnittsstudie [Depth and integration of science modules in medical studies at recognized public and private faculties in Germany: A cross-sectional study]. Z Evid Fortbild Qual Gesundhwes. 2022;174:90-96. DOI: 10.1016/j.zefq.2022.08.006
[3] Bundesärztekammer. Wissenschaftlichkeit als konstitutionelles Element des Arztberufes. Berlin: Bundesärztekammer; 2020. Zugänglich unter/available from: https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/WB/Stellungnahme_Wissenschaftlichkeit.pdf
[4] Bundesvertretung der Medizinstudierenden in Deutschland e.V. (bvmd). Konzeptpapier zur Zukunft und Weiterentwicklung des Medizinstudiums. Berlin: bvmd; 2014. Zugänglich unter/available from: https://www.bvmd.de/wp-content/uploads/2021/04/2014-06-01_aktuell_Grundsatzetscheidung_Zukunft_und_Weiterentwicklung_des_Medizinstudiums_zuletzt_gea%CC%88ndert_am_30.06.2018.pdf
[5] Densen P. Challenges and opportunities facing medical education. Trans Am Clin Climatol Assoc. 2011;122:48-58.
[6] Deutsche Forschungsgemeinschaft, Senatskommission. Empfehlungen der Senatskommission für Klinische Forschung. Strukturierung der wissenschaftlichen Ausbildung für Medizinerinnen und Mediziner. Bonn: Deutsche Forschungsgemeinschaft; 2010. Zugänglich unter/available from: https://www.dfg.de/resource/blob/169680/df604c619d6c03218789faa0d18acc70/medizinausbildung-senat-klinische-forschung-data.pdf
[7] Epstein N, Huber J, Gartmeier M, Berberat PO, Reimer M, Fischer MR. Investigation on the acquisition of scientific competences during medical studies and the medical doctoral thesis. GMS J Med Educ. 2018;35(2):Doc20. DOI: 10.3205/zma001167
[8] Fischer F, Kollar I, Ufer S, Sodian B, Hussmann H, Pekrun R, Neuhaus B, Dorner B, Pankofer S, Fischer M, Strijbos JW, Henne M, Eberle J. Scientific reasoning and argumentation: advancing an interdisciplinary research agenda in education. Frontline Learn Res. 2014;2(3):28-45. DOI: 10.14786/flr.v2i3.96
[9] Gerst T, Hibbeler B. Ärztemangel im Labor. Dtsch Ärztebl. 2012;37:A1804-1808. Zugänglich unter/available from: https://www.aerzteblatt.de/pdf.asp?id=129816
[10] Goerdt L, Poemsl J, Spaich S, Welzel G, Abo-Madyan Y, Ehmann M, Berlit S, Tuschy B, Sütterlin M, Wenz F, Sperk E. Longitudinal cosmetic outcome after planned IORT boost with low kV X-rays-monocentric results from the TARGIT BQR registry. Transl Cancer Res. 2023;12(7):1715-1726. DOI: 10.21037/tcr-23-88
[11] Goerdt L, Schnaubelt R, Kraus-Tiefenbacher U, Brück V, Bauer L, Dinges S, von der Assen A, Meye H, Kaiser C, Weiss C, Clausen S, Schneider F, Abo-Madyan Y, Fleckenstein K, Berlit S, Tuschy B, Sütterlin M, Wenz F, Sperk E. Acute and Long-Term Toxicity after Planned Intraoperative Boost and Whole Breast Irradiation in High-Risk Patients with Breast Cancer-Results from the Targeted Intraoperative Radiotherapy Boost Quality Registry (TARGIT BQR). Cancers (Basel). 2024;16(11):2067. DOI: 10.3390/cancers16112067
[12] Griffiths R. Knowledge production and the research–teaching nexus: the case of the built environment disciplines. Stud High Educ. 2004;29(6):709-726. DOI: 10.1080/0307507042000287212
[13] Grube M, Dimmler A, Schmaus A, Saup R, Wagner T, Garvalov BK, Sleeman JP, Thiele W. Ketogenic diet does not promote triple-negative and luminal mammary tumor growth and metastasis in experimental mice. Clin Exp Metastasis. 2024;41(3):251-266. DOI: 10.1007/s10585-023-10249-z
[14] Hahn EG, Fischer MR. Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLM) für Deutschland: Zusammenarbeit der Gesellschaft für Medizinische Ausbildung (GMA) und des Medizinischen Fakultätentages (MFT). GMS Z Med Ausbild. 2009;26(3):Doc35. DOI: 10.3205/zma000627
[15] Healey M, Jenkins A. Linking discipline-based research and teaching through mainstreaming undergraduate research and inquiry. High Educ. 2009;47:1-66.
[16] Healey M, Jenkins A, Lea J. Developing research-based curricula in college-based higher education. High Educ Acad. 2014. Zugänglich unter/available from: https://www.advance-he.ac.uk/knowledge-hub/developing-research-based-curricula-college-based-higher-education
[17] Holzkamp K. Lernen. Subjektwissenschaftliche Grundlegung. Frankfurt am Main: Campus-Verlag; 1995.
[18] Huber L. Warum Forschendes Lernen nötig und möglich ist. In: Huber L, editor. Forschendes Lernen im Studium. Aktuelle Konzepte und Erfahrungen. Bielefeld: Universitätsverlag Webler; 2009. p.9-35.
[19] Lawson AE. Basic inferences of scientific reasoning, argumentation, and discovery. Sci Educ. 2010;94(2):336-364. DOI: 10.1002/sce.20357
[20] Loos S, Sander M, Albrecht M. Systematische Situationsanalyse zum wissenschaftlichen Nachwuchs in der klinischen Forschung. Berlin: IGES; 2014. Zugänglich unter/available from: https://www.iges.com/e6/e1621/e10211/e8885/e9500/e9501/e9503/attr_objs9504/IGES_Nachwuchs_WEB_ger.pdf
[21] Medizinischer Fakultätentag. Diskussionspapier: Die Bedeutung von Wissenschaftlichkeit für das Medizinstudium und die Promotion. Halle (Saale): Nationale Akademie der Wissenschaften Leopoldina; 2019. Zugänglich unter/available from: https://www.leopoldina.org/uploads/tx_leopublication/2019_Diskussionspapier_Wissenschaftlichkeit.pdf
[22] Medizinischer Fakultätentag. Positionspapier: Strukturierte Promotion und wissenschaftliche Ausbildung in der Medizin. Berlin: MFT; 2016. Zugänglich unter/available from: https://medizinische-fakultaeten.de/wp-content/uploads/2016/04/positionspapier_strukturierte_promotionen_final.pdf
[23] Medizinischer Fakultätentag. Positionspapier: Vermittlung von Wissenschaftskompetenz im Medizinstudium. Berlin: MFT; 2017. Zugänglich unter/available from: https://medizinische-fakultaeten.de/wp-content/uploads/2018/01/Positionspapier-Wissenschaftlichkeit.pdf
[24] Mileder LP. Medical students and research: Is there a current discrepancy between education and demands? GMS Z Med Ausbild. 2014;31(2):Doc15. DOI: 10.3205/zma000907
[25] Müller W. AWMF-Stellungnahme: Förderung der wissenschaftlichen Medizin schon in der studentischen Ausbildung. GMS Mitt AWMF. 2008;5:Doc12. Zugänglich unter/available from: https://www.egms.de/static/de/journals/awmf/2008-5/awmf000155.shtml
[26] Oncological outcome after planned IORT boost in breast cancers with low kV x-rays – results from the prospective phase IV study TARGIT BQR. Strahlenther Onkologie. submitted
[27] Piedmont S, Robra BP. Praxis und Wissenschaft im Studium – Erwartungen und erlebte Kompetenzförderung von Studierenden der Humanmedizin im Vergleich mit Studierenden anderer Fächer. GMS Z Med Ausbild. 2015;32(1):Doc8. DOI: 10.3205/zma000950
[28] Schmidt FM, Zottmann JM, Sailer M, Fischer MR, Berndt M. Statistical literacy and scientific reasoning & argumentation in physicians. GMS J Med Educ. 2021;38(4):Doc77. DOI: 10.3205/zma001473
[29] Vaidya JS, Bulsara M, Baum M, Wenz F, Massarut S, Pigorsch S, Alvarado M, Douek M, Saunders C, Flyger H, Eiermann W, Brew-Graves C, Williams NR, Potyka I, Roberts N, Bernstein M, Brown D, Sperk E, Laws S, Sütterlin M, Corica T, Lundgren S, Holmes D, Vinante L, Bozza F, Pazos M, Blanc-Onfroy ML, Gruber G, Polkowski W, Dedes KJ, Niewald M, Blohmer J, McReady D, Hoefer R, Kelemen P, Petralia G, Falzon M, Joseph D, Tobias JS. New clinical and biological insights from the international TARGIT-A randomised trial of targeted intraoperative radiotherapy during lumpectomy for breast cancer. Br J Cancer. 2021;125(3):380-389. DOI: 10.1038/s41416-021-01440-8
[30] Vaidya JS, Bulsara M, Baum M, Wenz F, Massarut S, Pigorsch S, Alvarado M, Douek M, Saunders C, Flyger HL, Eiermann W, Brew-Graves C, Williams NR, Potyka I, Roberts N, Bernstein M, Brown D, Sperk E, Laws S, Sütterlin M, Corica T, Lundgren S, Holmes D, Vinante L, Bozza F, Pazos M, Le Blanc-Onfroy M, Gruber G, Polkowski W, Dedes KJ, Niewald M, Blohmer J, McCready D, Hoefer R, Kelemen P, Petralia G, Falzon M, Joseph DJ, Tobias JS. Long term survival and local control outcomes from single dose targeted intraoperative radiotherapy during lumpectomy (TARGIT-IORT) for early breast cancer: TARGIT-A randomised clinical trial. BMJ. 2020;370:m2836. DOI: 10.1136/bmj.m2836
[31] Vaidya JS, Joseph DJ, Tobias JS, Bulsara M, Wenz F, Saunders C, Alvarado M, Flyger HL, Massarut S, Eiermann W, Keshtgar M, Dewar J, Kraus-Tiefenbacher U, Sütterlin M, Esserman L, Holtveg HM, Roncadin M, Pigorsch S, Metaxas M, Falzon M, Matthews A, Corica T, Williams NR, Baum M. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial. Lancet. 2010;376(9735):91-102. DOI: 10.1016/S0140-6736(10)60837-9
[32] Vaidya JS, Wenz F, Bulsara M, Tobias JS, Joseph DJ, Keshtgar M, Flyger HL, Massarut S, Alvarado M, Saunders C, Eiermann W, Metaxas M, Sperk E, Sütterlin M, Brown D, Esserman L, Roncadin M, Thompson A, Dewar JA, Holtveg HM, Pigorsch S, Falzon M, Harris E, Matthews A, Brew-Graves C, Potyka I, Corica T, Williams NR, Baum M; TARGIT trialists' group. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet. 2014;383(9917):603-613. DOI: 10.1016/S0140-6736(13)61950-9
[33] Wissenschaftsrat. Empfehlungen zur Weiterentwicklung des Medizinstudiums in Deutschland auf Grundlage einer Bestandsaufnahme der humanmedizinischen Modellstudiengänge. Dresden: Wissenschaftsrat; 2014. Zugänglich unter/available from: https://www.wissenschaftsrat.de/download/archiv/4017-14.pdf?__blob=publicationFile&v=3